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Abstract

The properties of brane–antibrane systems and systems of unstable D-branes in Type II super-
string theory are investigated using the formalism of superconnections. The low-energy open string
dynamics is shown to be probed by generalized Dirac operators. The corresponding index theorems
are used to compute the chiral gauge anomalies in these systems, and hence their gravitational and
Ramond–Ramond couplings. A spectral action for the generalized Dirac operators is also com-
puted and shown to exhibit precisely the expected processes of tachyon condensation on the brane
worldvolumes. The Chern–Simons couplings are thereby shown to be naturally related to Fred-
holm modules and bivariant K-theory, confirming the expectations that D-brane charge is properly
classified by K-homology.
© 2002 Elsevier Science B.V. All rights reserved.

MSC: 55B20; 58B50

Subj. Class.: Differential geometry; General relativity

Keywords: Space splitting; Null hypersurfaces; Extrinsic curvature

1. Introduction and summary

The surge of interest in recent years in the study of unstable systems of D-branes
(see[1] for reviews) has been sparked in part because they carry information about the
non-perturbative vacuum of string theory. The instability present in such systems is marked
by the appearance of tachyonic modes in the open string sectors. It was originally suggested
that the tachyon field on these D-branes should be properly understood as a Higgs field[2],
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and that the instability is due to a perturbative expansion about an unstable extremum of
the tachyon potential. Assuming certain properties of the potential, the system may then
decay into its true vacuum state and sometimes leave behind a topological defect which is
indistinguishable from a stable, supersymmetric D-brane. The assumptions which go into
this argument have been subsequently verified within the framework of string field theory
[3–6] and of worldsheetσ -model effective actions[7].

The prototypical system consists of a collection of branes and antibranes. It has been
used to develop the topological classification of D-brane charges in terms of the cohomol-
ogy of their Chan–Paton gauge bundles, namely K-theory[8,9] (see[10] for a review). In
this setting, Ramond–Ramond (RR) charge is characterized by the formal difference of the
vector bundles carried by the branes and antibranes. There is a canonical map from the
K-theory group into cohomology given by the Chern character, which can be used to give
explicit charge formulas for the coupling of Ramond–Ramond potentials to the D-brane
worldvolumes. For this, the gauge connections should be replaced by the appropriate ana-
logues for virtual bundles. It was suggested in[9] that the appropriate geometric extension
is given by a superconnection[11–13]which naturally incorporates the tachyon field of the
unstable system. This description has been exploited recently to describe many aspects of
the couplings of unstable D-branes to closed string supergravity fields[5,6,14–17].

In this paper we will present a detailed, mathematical exposition of these relationships.
We will pay particular attention to the systematic derivation of the couplings of the unstable
D-branes to the Ramond–Ramond tensor potentials. Our analysis will rely on the identifi-
cations of anomalies in the brane worldvolume quantum field theories due to the presence
of chiral fermion fields. The RR charges of these systems may then be determined by the
appropriate modification of standard index theoretical techniques. Such interpretations have
also been pointed out in[5,16].

Recall that the RR couplings on the worldvolumeΣ of N coincident D-branes in Type
II superstring theory is expressed through the Wess–Zumino action[8,18–21]

SWZ =
∫
Σ

C ∧ trN e(FA−B)/2π i ∧ ed/2 ∧
√

Â(RT)

Â(RN)
, (1.1)

where throughout we shall work in appropriate string units. In(1.1), C is the pullback of
the total RR form potentialC under the worldvolume embeddingφ : Σ → X into the
space–time manifoldX, FA the field strength of theU(N) gauge fieldA on the branes,
with trN the trace in the fundamental representation ofU(N) andB the pullback of the
NS–NS two-form potentialB. The quantitiesRT andRN are the curvatures of the tangent
and normal bundles toΣ inX, respectively,Â(R) is the usual Dirac index andd is a degree 2
characteristic class which defines a spinc-structure onΣ . This requires the NS–NSB-field
to be topologically trivial[9,22,23]. Action (1.1) can be written in terms of space–time
quantities alone in the form[8]

SWZ =
∫
X

C ∧ ch(φ!E) ∧
√
Â(TX), (1.2)

whereφ! is the induced Gysin map acting on K-theory,E the Chan–Paton gauge bundle
supported by the D-branes and ch denotes the usual Chern character. This leads to an
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interpretation of RR charges as elementsx = φ!E ∈ K0(X) of the K-theory of space–time.
A similar property is true of the Ramond–Ramond fields themselves[24,25]. For non-abelian
gauge bundles, the couplings(1.1) and (1.2)require appropriate modifications in order that
the action be T-duality-invariant[26,27].

For a system ofN+ coincident branes andN− coincident antibranes wrapping a sub-
manifoldΣ of space–time, we will derive the charge formula

SDD̄
WZ =

∫
Σ

C ∧ trN+⊕N−

(
1N+ 0

0 −1N−

)
exp

1

2π i

(
FA+ + T †T (DT)†

DT FA− + TT†

)

∧e−B/2π i ∧ ed/2 ∧
√

Â(RT)

Â(RN)
, (1.3)

whereFA± are the field strengths of theU(N±)gauge fieldsA± on the branes and antibranes,
respectively,T is the bi-fundamentalN− ⊗ N+ tachyon field and the gauge-covariant
derivative is given byDT = dT + A−T + TA+. The gauge field part of this action in
the caseN+ = N− was obtained to leading orders in powers of the tachyon field in
[14] by a tree-level calculation of the open string effective action on the brane–antibrane
system. As proposed there, the full gauge coupling can be elegantly expressed in terms of
a superconnection associated with the open string fieldsA± andT , and indeed within the
present formalism this is how these terms shall emerge. For the appropriate Higgs profile
of the tachyon field, these couplings were shown to yield the anticipated RR couplings
to lower-dimensional D-branes that remain after tachyon condensation. We will show that
the same is true when one includes the gravitational couplings to the brane worldvolume,
as in (1.3). Action (1.3) also has an appropriate modification which makes it explicitly
T-duality-invariant[6].

There is an analogous story for the unstable Dp-branes of Type II superstring theory
which occur at the “wrong” values ofp [28,29]. From the form of the corresponding open
string scattering amplitudes, it was proposed that a system ofN unstable branes wrapping a
submanifoldΣ of space–time generates a Ramond–Ramond coupling of the form[28–30]

S̃
(0)non
WZ =

∫
Σ

C ∧ d trNT e(FA−B)/2π i ∧ ed/2 ∧
√

Â(RT)

Â(RN)
, (1.4)

whereT is the Hermitian tachyon field which lives on the non-BPS branes and which belongs
to the adjoint representation of theU(N) gauge group. This form of the RR coupling
has been shown to correctly reproduce, modulo the gravitational couplings, the charge
formula for BPS D-branes after tachyon condensation. However, as in(1.3), one expects
interactions between the gauge fields and higher powers of the tachyon field[14]. Based on
this observation, it was proposed that the full Wess–Zumino action describing this coupling
is given by[31]

S̃non
WZ =

∫
Σ

C ∧
∑

n,m≥0

anm trN(DAT )2n+1T 2m ∧ e(FA−B)/2π i ∧ ed/2 ∧
√

Â(RT)

Â(RN)
,

(1.5)
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whereanm are undetermined numerical coefficients. The gauge-covariant derivative in(1.5)
is given byDAT = dT+[A, T ]. Again, modulo the gravitational parts, action(1.5)correctly
reproduces the Wess–Zumino term for BPS D-branes after tachyon condensation. It likewise
admits a T-duality-invariant extension[6,32].

In what follows we shall show that this is indeed the case. We will find that the explicit
realization of the proposed expansion(1.5) is given by an RR coupling of the form

Snon
WZ =

∫
Σ

C ∧ trN


exp


 1

2π i
(T 2 + DAT ) +

∞∑
r,s=1

Ξrs[A, T ]




−exp


 1

2π i
(T 2 − DAT ) +

∞∑
r,s=1

Ξrs[A,−T ]






∧e(FA−B)/2π i ∧ ed/2 ∧
√

Â(RT)

Â(RN)
, (1.6)

whereΞrs[A, T ] are involved invariant functions of the gauge and tachyon fields on the
system of non-BPS D-branes. They are given explicitly in(4.23). In fact, we will find that
the lowest-order couplings(1.4)are induced by regarding the system of unstable D-branes
as the naive dimensional reduction of a stable system in one higher dimension. Instead, the
full action (1.6) comes from realizing the unstable branes in terms of a certain projection
of a brane–antibrane system[28,33], and hence from the superconnection formalism that
is appropriate to such systems[5,6,15]. In this sense, formula(1.4)may be thought of as a
sort of “field theoretical” limit of the “stringy” action(1.6).

While the boundary string field formalism yields explicit forms for the Ramond–Ramond
couplings of unstable systems of D-branes that give the correct brane tensions in processes
involving tachyon condensation[5,6], we will take a more mathematical approach to the
construction of the effective actions for these systems. The present approach focuses more
closely on a set of generalized Dirac operators associated to the unstable D-branes, which
yield an equivalent description of their geometry as that by superconnections and which
serve as a probe of the low-energy open string dynamics. With this analysis, we will develop
an intuitive, geometric understanding of the role of the tachyon field on non-BPS D-branes,
and hence to the origins of their worldvolume effective field theories. A real virtue of the
present formalism is that it enables the construction ofglobal expressions for the worldvol-
ume actions. In addition to yielding mathematical constructions of the Ramond–Ramond
couplings, the Dirac operators yield very compact, spectral forms for the kinetic parts of
the effective action describing the propagation of the worldvolume fields. Such generalized
Dirac–Born–Infeld type actions have been previously proposed in[15,34,35]. The condi-
tions required for tachyon condensation are thereby reproduced in a very natural way. We
will show that the RR couplings for such generalized vortex configurations reduce to the
anticipated forms for supersymmetric D-branes, generalizing earlier calculations to incor-
porate the worldvolume gravitational couplings. We will also describe the modifications of
these actions required for T-duality invariance, although at present we do not have a natural
geometric origin for these extra couplings.
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Although for most of our analysis we restrict attention to D-branes in Type II superstring
theory for simplicity, the techniques developed can be generalized to other string theories
and to other brane systems (see[16] for further examples). In particular, a system of stable,
supersymmetric D-branes is also a special instance of this general formalism. The formal-
ism of generalized Dirac operators then suggests another intriguing relationship between
Ramond–Ramond charges and K-theory. More precisely, it leads immediately to an interpre-
tation of D-brane charge in terms of bivariant K-theory, and hence analytic K-homology.
The relationship unveiled here complements previous considerations which suggest that
D-brane charge should really be associated to K-homology[36,37]. As we will show, the
formalism of analytic K-homology takes a particularly transparent form when applied to
systems of unstable D-branes.

The structure of the remainder of this paper is as follows. InSection 2, we will give a
mathematical introduction to the theory of superconnections and how they naturally de-
scribe the geometry of brane–antibrane systems. We also introduce the generalized Dirac
operators which will play a prominent role in this paper, and also how the standard for-
malism for dealing with gauge anomalies can be extended to this case. InSection 3, we
derive the form of the Ramond–Ramond couplings on brane–antibrane systems by using
index theoretical arguments based on the identification of gauge anomalies generalized to
the case of superconnection gauge fields. We describe the modifications of these actions
due to non-abelian structure groups and topologically trivialB-fields. We also describe how
tachyon condensation processes emerge naturally within this geometrical formalism, and
how the standard anomalous couplings on systems of stable D-branes are reproduced from
these RR couplings via the global bound-state construction. InSection 4, we then turn to the
derivation of the Ramond–Ramond couplings on systems of unstable D-branes. We show
how the leading-order terms in the tachyon field arise from a dimensional reduction of a
stable system in one higher dimension. We then relate the couplings to the formalism of
superconnections by deriving the full expansion in powers of the tachyon field via reduction
from a brane–antibrane system. The resulting actions are also shown to reduce appropriately
for Higgs profiles of the tachyon field. InSection 5, we indicate how the couplings univer-
sally extend to all branes of Type II superstring theory and M-theory, and hence illustrate
the power of the analysis in that it can be applied to many other string theories and brane
systems than the ones considered in this paper. Finally, inSection 6, we investigate the in-
timate relationship between D-brane charges and K-theory in light of the present analysis.
We show that the formalism of superconnections and generalized Dirac operators leads nat-
urally to the interpretation of D-brane charges in terms of Fredholm modules and bivariant
K-theory, and hence analytic K-homology. We also show how the reductions leading to the
charge formulas for unstable D-branes admit natural interpretations within this homological
framework, thereby lending further support to the suggestion that D-brane charge should
be properly understood within the context of K-homology.

2. Superconnections on brane–antibrane systems

In this section, we will describe the geometry of brane–antibrane systems from mostly a
mathematical perspective, primarily to introduce notions that will play a fundamental role
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in later sections. Such systems areZ2-graded objects[9] and are thereby most naturally
described using the language of superconnections[11,12](see[13] for a concise introduc-
tion). Superconnections were originally introduced as geometric objects associated with
graded vector bundles whereby the conventional integer grading by differential form de-
gree is replaced with aZ2-grading, giving more freedom to the standard constructions of
differential geometry. In[11], the Chern–Weil invariants of a superbundle were constructed
and the definition of the Chern character of a superconnection was given. We will focus
primarily on the basic result that a certain class of superconnections are in a one-to-one cor-
respondence with (generalized) Dirac operators, a fact that will be at the heart of the analysis
of this paper. Earlier descriptions of the geometry of Higgs fields using the formalism of
superconnections can be found in[38].

2.1. Chan–Paton superbundles

Consider a system ofN+ coincident Dp-branes andN− Dp̄-branes in Type II superstring
theory.1 We assume that the branes all wrap a common worldvolumeΣ of dimensionp+1
in the 10-dimensional space–time manifoldX which is endowed with a spin structure and
a Riemannian metric. We are interested in the properties of Chan–Paton gauge bundles
E → Σ over the brane–antibrane worldvolume. The open string Hilbert space of the
brane–antibrane system has a naturalZ2-grading which may be associated to it[9]. The
Chan–Paton gauge group of thep–p̄ pairs isU(N+ +N−) and it acts on the Hilbert space
H = CN++N−

. It has an indexa = + for an open string ending on ap-brane anda = −
for an open string ending on āp-brane. The endpoints of thep–p̄ open strings therefore
carry a charge which takes values in a graded quantum Hilbert spaceH = H+ ⊕H−. We
may regard thea = + state as bosonic anda = − as fermionic.

This implies that any complex vector bundleE → Σ inherits thisZ2-grading and
becomes a superbundleE = E+ ⊕E−, i.e. a bundle whose fibresEx = E+

x ⊕E−
x , x ∈ Σ ,

are graded complex vector spaces. The bundlesE+ andE− are identified with theU(N+)
andU(N−) Chan–Paton gauge bundles on the branes and antibranes, respectively. When
N+ = N−,E+ andE− are topologically the same so that when such a collection of branes
annihilates to the vacuum state there is no overall D-brane charge[2]. ForN+ �≡ N−, after
brane–antibrane annihilation one is left with an excited state that has the Ramond–Ramond
charge ofN+ − N− D-branes.

This means that the natural geometrical objects to consider on thep–p̄ worldvolume
are not ordinary gauge connections, but rather superconnections[11–13]. For this, we let
Ω(Σ) = ⊕k≥0 Ω

k(Σ) be the graded algebra of smooth complex-valued differential forms
over Σ with Z-grading defined by the form degreek. The spaceΩ(Σ,E) of smooth
E-valued differential forms onΣ then has a naturalZ × Z2-grading, but we will be mainly
concerned with its totalZ2-grading defined byΩ(Σ,E) = Ω+(Σ,E)⊕Ω−(Σ,E), where

Ω±(Σ,E) = ⊕
k≥0

(Ω2k(Σ,E±) ⊕ Ω2k+1(Σ,E∓)). (2.1)

1 For p = 9, tadpole anomaly cancellation requires there to be an equal number of space–time filling branes
and antibranes in the Type IIB vacuum state andN+ = N−.
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A superconnection is then any odd linear operatorA on theΩ(Σ)-moduleΩ(Σ,E), i.e.
A : Ω±(Σ,E) → Ω∓(Σ,E), that satisfies the Leibnitz rule

[A, β]+ = dβ, β ∈ Ω(Σ), (2.2)

where [·, ·]+ denotes the graded commutator. Note that a superconnection does not neces-
sarily sendk-forms to(k+1)-forms, but rather odd (resp. even) elements to even (resp. odd)
elements. Nonetheless, because of the Leibnitz property(2.2), the superconnections on a
Chan–Paton superbundle always form an affine space modelled on some set of local oper-
ators.

If ∇ is an arbitrary connection, then, by the Leibnitz rule,A−∇ commutes with elements
of Ω(Σ), and so it can be represented by the exterior product with an odd matrix-valued
formA, i.e.(A− ∇)β = A∧ β for someA ∈ Ω−(Σ,EndE). Thus any superconnection
can be written in terms of a fixed, fiducial connection∇ as

A = ∇ +A. (2.3)

From the tensor product grading on the endomorphism algebraΩ(Σ,EndE), we have

Ω±(Σ,EndE)= [Ω∓(Σ) ⊗ (Hom(E+, E−) ⊕ Hom(E−, E+))]
⊕[Ω±(Σ) ⊗ (EndE+ ⊕ EndE−)] (2.4)

with the multiplication onΩ(Σ,EndE) = Ω+(Σ,EndE) ⊕ Ω−(Σ,EndE) given by

(α ⊗ a) · (β ⊗ b) = (−1)|a||β|(α ∧ β) ⊗ (a ◦ b) (2.5)

for α, β ∈ Ω(Σ) anda, b ∈ EndE, where|a| denotes the total degree ofa. With respect
to thisZ2-grading, we may decompose the linear operatorA as

A =
(
A+ T −
T + A−

)
, (2.6)

where

A± =
∑
k≥0

A±
(2k+1) ∈ Ω−(Σ) ⊗ EndE±,

T ± =
∑
k≥0

T ±
(2k) ∈ Ω+(Σ) ⊗ Hom(E±, E∓). (2.7)

The one-form components ofA± define ordinary gauge connectionsA±
(1) on the bundlesE±.

The zero-form components ofT ± are odd matrix-valued bundle mapsT ±
(0) : C∞(Σ,E±) →

C∞(Σ,E∓) with (T ±
(0))

† = T ∓
(0), i.e. smooth sections of the product bundlesE∓ ⊗ (E±)∗,

where(E±)∗ is the dual ofE±. They define the complex scalar tachyon fieldsT (x) =
T +
(0)(x) of the brane–antibrane system. At a pointx ∈ Σ , the tachyon field is a linear fibre

mapT (x) : E+
x → E−

x and its adjointT †(x) : E−
x → E+

x .
If θ is any matrix-valued form, then the Leibnitz rule and the Jacobi identity for the

graded commutator imply that

[[A, θ ]+, β]+ = [A, [θ, β]+]+ + (−1)|θ ||β|[dβ, θ ]+ ∀β ∈ Ω(Σ). (2.8)
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Eq. (2.8)defines the action of the covariant derivativeAθ in Ω(Σ,EndE), i.e. Aθ is
identified as multiplication by the operator [A, θ ]+. SinceA is odd, we have [A,A]+ =
2A2, and so from the Leibnitz rule and(2.8), we find

[A2, β]+ = [A, [A, β]+]+ = d(dβ) = 0 ∀β ∈ Ω(Σ). (2.9)

It follows thatA2 lives in the endomorphism bundleΩ+(Σ,EndE). The operatorFA = A2

is the curvature of the superconnectionA and it satisfies the Bianchi identity

AFA = [A, FA]+ = [A,A2]+ = 0. (2.10)

The curvature is in general a sum

FA =
∑
k≥0

F(k), F(k) ∈ Ωk(Σ,EndE). (2.11)

By using the grading(2.4), the first few components are found to be

F(0) =
(
T †T 0

0 TT†

)
, (2.12)

F(1) =
(

0 DT†

DT 0

)
, (2.13)

F(2) =
(
R∇ + F+ 0

0 R∇ + F−

)
, (2.14)

etc., whereR∇ = ∇2 is the curvature of the fiducial derivation∇,

F± = FA± = ∇A±
(1) + A±

(1) ∧ A±
(1) (2.15)

are the curvatures of the gauge connectionsA±
(1) onE±, and

DT = ∇T + A−
(1)T + TA+

(1), DT† = ∇T † + A+
(1)T

† + T †A−
(1). (2.16)

The curvature component(2.12)defines a term bilinear in the tachyon field, the component
(2.13)defines a kinetic term in terms of covariant derivatives of the tachyon field, and(2.14)
yields the usual Yang–Mills field strengths on the branes and antibranes in the absence of
the tachyon field (and all other higher rank fields).

Everything we have said thus far has been rather general, and we now need to in-
put some more physical requirements. We will focus on the low-lying excitations of the
brane–antibrane system, which are described by thep–p, p–p̄ andp̄–p̄ open string states.
Thep–p (resp.p̄–p̄) open string spectrum consists of a masslessU(N+) (resp.U(N−))
supersymmetric Yang–Mills multiplet, along with massive excitations. In these bosonic
components, the NS sector tachyon state is removed by the standard GSO projection. The
open string wavefunctions are the productsψ = ψosc ⊗ ψCP of the usual mode decom-
positions and the Chan–Paton factorsψCP ∈ U(N+ + N−). The GSO projection operator
is

PGSO = 1
2(1 + (−1)F ), (2.17)
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whereF is the worldsheet fermion number operator. Its action on the Chan–Paton factors
may be represented as

(−1)F : ψCP �→ εψCPε (2.18)

in terms of the usual grading automorphismε for the superbundleE,

ε =
(

1N+ 0

0 −1N−

)
, (2.19)

such thatE = E+ ⊕ E− decomposes into the±1 eigenspaces ofε. With respect to this
decomposition, thep–p andp̄–p̄ open strings have diagonal Chan–Paton wavefunctions
ψCP which are even under action(2.18)of (−1)F , leading to the usual GSO projection on
the oscillator modesψosc. On the other hand, the Chan–Paton wavefunctions for thep–p̄
and p̄–p open string states are off-diagonal and odd under(−1)F , leading to a reversed
GSO projection on the corresponding oscillators. This means that in these sectors, the
masslessU(N+) andU(N−) vector supermultiplets are projected out, and the tachyon
survives[39,40]. These features of the low-energy open string theory are already encoded
in the first two components of the superconnection constructed above. But it also implies
that, as far as the low-energy effective field theory on the brane–antibrane worldvolume is
concerned, all higher form degree components ofA in (2.6) are absent, because the GSO
projection(2.17)eliminates the off-diagonal fermionic gauge fields. The superconnections
relevant to the low-energy physics of brane–antibrane systems are therefore precisely of
the type considered originally in[11], and henceforth we shall thereby deal only with
the superconnection defined by takingA± = A±

(1) andT ± = T ±
(0) in (2.6). Then, the

superconnection field strength(2.11)reduces to

FA =
(
R∇ + F+ + T †T DT†

DT R∇ + F− + TT†

)
. (2.20)

The stated properties of the GSO projection also imply that the gauge symmetry group
G of the superbundleE = E+ ⊕ E−, which is generically the unitary Lie supergroup
U(N+|N−), is instead that which is lifted from the structure groups of the Chan–Paton
bundlesE± over the branes and antibranes, i.e.G = U(N+)×U(N−).2 With g = g+⊕g−
an automorphism of the associated principal bundle, the gauge transformation law of the
superconnection is given as

A �→ gAg−1 + g∇g−1, FA �→ gFAg
−1, (2.21)

which is equivalent to the component transformation rules

A±
(1) �→ g±A±

(1)(g
±)−1 + g±∇(g±)−1, F± �→ g±F±(g±)−1,

T �→ g−T (g+)−1, T † �→ g+T †(g−)−1. (2.22)

In other words, the component gauge fields transform in the usual way under the adjoint
actions ofU(N+) andU(N−), while the tachyon field transforms in a bi-fundamental

2 An alternative interpretation of theU(N+|N−) brane–antibrane supergroup symmetry in the context of topo-
logical string theory is given in[41].
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unitary group representationN− ⊗ N+, or equivalently it carries charges(N−,N+) with
respect to theU(N−) × U(N+) brane–antibrane gauge fields(A−

(1), A
+
(1)). But within the

more general superconnection formalism presented above, we see that the tachyon field may
actually be regarded as a sort of generalized gauge field on the discrete spaceZ2, i.e. we
may regard the brane–antibrane worldvolume as the two-sheeted manifoldΣ × Z2, whose
two sheets are connected together byT .

2.2. Spin geometry

The properties of the GSO projection on the low-lying excitations of the brane–antibrane
system have in addition some important consequences for the spin geometry of the world-
volume manifoldΣ . We work in Type IIB superstring theory so that dimΣ = p+1 is even,
and assume thatΣ is oriented with a given Riemannian structure. The corresponding result
for Type IIA D-branes will follow by T-duality. LetC+(Σ) be the complex Clifford bundle
overΣ whose fibre over a pointx ∈ Σ is the complexified Clifford algebraC+(T ∗

x Σ) with
respect to a Hermitian structure〈·, ·〉 on the fibres of the cotangent bundleT ∗Σ . The smooth
sections of the Clifford bundle form the algebraC = C∞(Σ,C+Σ). LetS → Σ be a spinor
bundle of rank 2(p+1)/2, and letc : T ∗Σ → EndS be a spinc-structure on the worldvolume
Σ . This requires, in addition to the orientability ofΣ , that its second Stiefel–Whitney class
w2(Σ) be the mod 2 reduction of an integral cohomology class. The linear bundle mapc

satisfies

c(v)2 + 〈v, v〉 = 0, v ∈ T ∗Σ, (2.23)

and it can be universally extended to an irreducible Clifford action onS, i.e. c extends

uniquely to an algebra isomorphismc : C+(Σ)
≈→EndS which is compatible with the

property(2.23). In particular, the algebraC acts irreducibly on the spaceC∞(Σ, S) of
smooth sections of the spinor bundle so thatC ∼= EndS.

The Clifford bundle is a superbundleC+(Σ) = C++(Σ) ⊕ C+−(Σ) with grading auto-
morphismv �→ −v. The spinor bundle is also a superbundleS = S+ ⊕S− with Z2-grading
defined as follows. For eachx ∈ Σ , let θa be an oriented orthonormal frame inT ∗

x Σ , and
set

γ a = c(θa). (2.24)

Theγ ’s generate locally the Euclidean–Dirac algebra

γ aγ b + γ bγ a = −2δab, a, b = 1, . . . , p + 1. (2.25)

The Hermitian chirality operatorγc = i(p+1)/2γ 1γ 2 · · · γ p+1 then satisfies

(γc)
2 = 12(p+1)/2, γcγ

a = −γ aγc. (2.26)

The sub-bundlesS± are taken to be the±1 eigenspaces of the chirality operatorγc. They
have the same rank 2(p−1)/2, and because of(2.26), the (left) action ofC+(Σ) onS, defined
bya ·s = c(a)s, preserves thisZ2-grading, i.e.C++(Σ)·S± ⊂ S± andC+−(Σ)·S± ⊂ S∓.
Thus the superbundleS = S+ ⊕ S− is a graded (left) Clifford module.
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We will now incorporate the graded Chan–Paton vector bundleE = E+ ⊕ E− of the
brane–antibrane system above. For this, we introduce the twisted spinor bundle

SE = S ⊗ E = S+
E ⊕ S−

E (2.27)

with Clifford action c ⊗ 1, which we also denote byc. From the properties of the GSO
projection described in the previous section, it follows that the only chiral spinors that
appear in the spectrum of the brane–antibrane system are those which are lifted over
the bundlesE±. The GSO projection removes the massless fermionic modes in the open
string p–p̄ and p̄–p sectors. This implies that theZ2-grading of (2.27) is just that
which arises from the induced tensor product grading of the two superbundles
S andE,

S±
E = (S± ⊗ E+) ⊕ (S∓ ⊗ E−). (2.28)

This makesSE a Clifford module. It also implies that the appropriate superconnection on
(2.27)is a Clifford superconnectionS, i.e.S respects theC-module structure by satisfying
a second Leibnitz rule (in addition to(2.2)) involving the Clifford action

[S, c(β)]+ = c(∇β) ∀β ∈ Ω(Σ). (2.29)

Here∇ : C∞(Σ, TΣ) → C∞(Σ, T ∗Σ ⊗ TΣ) is the Levi–Civita connection on the
tangent bundleTΣ which can be written locally in terms of Christoffel symbolsΓ ∈
Ω1(Σ, so(T ∗Σ)) as∇ = d + Γ .

The spin connection∇son the spinor bundle has the property(2.29). Because of the canon-
ical bundle isomorphismΩ(Σ) ∼= C+(Σ), it is a map∇s : C∞(Σ, S) → C∞(Σ, T ∗Σ⊗S)

which can be written locally as

∇s = d + ω(Γ ), (2.30)

whereω : so(T ∗Σ) → C+(Σ) is the spinor representation of the Lie algebra of the
orthogonal group with

ω(Γi) = −1
4Γ

b
iaγ

aγ b. (2.31)

The corresponding curvature is

(∇s)2 = ω(R∇) = 1
4Rbaijγ

aγ b dxi ∧ dxj , (2.32)

whereR∇ = dΓ + Γ ∧ Γ ∈ Ω2(Σ, so(T ∗Σ)) is the Riemann curvature tensor. It follows
that ifS is any Clifford superconnection onSE , thenS−∇s⊗1 commutes with the Clifford
actionc, and therefore the most general Clifford superconnection is of the form

S = ∇s ⊗ 1 + 1 ⊗ A, (2.33)

whereA is any superconnection on the twisting bundleE. Since [∇s ⊗ 1, 1 ⊗ A] = 0, the
curvature of(2.33)splits as

S
2 = ω(R∇) ⊗ 1 + 1 ⊗ FA (2.34)
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into the sum of a purely gravitational piece and an internal gauge piece. Thus the Clifford
superconnectionsS will naturally incorporate both gauge and gravitational effects into
the ensuing computations. We note that(2.34)is compatible with the identificationFA ∈
Ω+(Σ,EndE), because the Leibnitz rule(2.29)implies

[S2, c(β)]+ = [S, [S, c(β)]+]+ = c(∇2β) = c(R∇ ∧ β), (2.35)

and also [ω(R∇), c(β)]+ = c(R∇ ∧β). This shows thatFA = S2 −ω(R∇) commutes with
all c(β), as expected.

Thus, given any superconnectionA on a Chan–Paton superbundleE = E+⊕E−, there is
a natural extension to a Clifford superconnection(2.33)on the twisted spinor bundle(2.27).
In some applications, such as the bound-state constructions of lower-dimensional D-branes
from the brane–antibrane system, we will require that the Chan–Paton bundleE itself define
a Clifford module. Then Schur’s lemma implies that any mapC∞(Σ, S) → C∞(Σ,E)

which commutes with the Clifford actionc is of the formψ �→ ψ ⊗ w, wherew ∈
C∞(Σ,W) with W = HomC+Σ(S,E) the bundle of intertwining maps[13]. Moreover,
any endomorphism ofC∞(Σ,E) that commutes with the Clifford action is of the form
ψ ⊗ w �→ ψ ⊗ Lw for some bundle mapL : W → W so that EndC+ΣE ∼= 1 ⊗ EndW .
The entire matrix bundle EndE is then generated by the sub-bundleC+(Σ) ∼= EndS ⊗ 1

acting by the spinor representation, and by its commutant1 ⊗ EndW so that

EndE ∼= C+(Σ) ⊗ EndW. (2.36)

This means that any Clifford moduleC∞(Σ,E) on a spinc-manifold Σ comes from a
twisted spinor bundleE ∼= SW = S ⊗ W with the canonical grading defined by(2.28). A
generic Clifford superconnectionA onE may then be written asA = ∇s ⊗ 1 + 1 ⊗ SW ,
whereSW is any superconnection on the intertwining bundleW .

2.3. Generalized Dirac operators

We will now describe some general properties of Dirac operators associated with su-
perconnections that are compatible with the Clifford action, with respect to a chosen
spinc-structure onΣ . These operators will play a fundamental role in all considerations
of this paper. LetS be such a Clifford superconnection, as in(2.33). We identify the alge-
braC = C∞(Σ,C+Σ) with the algebra of differential formsΩ(Σ) by the symbol map

isomorphismσ(β) = c(β)1S . The inverse “quantization” mapQ : Ω(Σ)
≈→C∞(Σ,C+Σ)

then allows one to represent exterior products of forms by Clifford multiplication[13]. We
define the associated twisted Dirac operator by the following composition of maps:

D/ : C∞(Σ, SE)
S→C∞(Σ, T ∗Σ ⊗ SE)

c→C∞(Σ, SE). (2.37)

In local coordinates whereS = θa ⊗Sa we haveD/ = γ a
Sa , and with respect to the grading

(2.4), we may write

D/ =
(

D/
+
A Gs ⊗ T †

Gs ⊗ T D/
−
A

)
, (2.38)
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where

D/
±
A = Q(∇s ⊗ 1 + 1 ⊗ A±

(1)) = γ a∇s
a ⊗ 1 + γ a ⊗ A±

(1)a. (2.39)

HereGs = G†
s is a constant operator onC∞(Σ, S) which we have combined with the

tachyon field in the zero-form component of the superconnectionA.
The Dirac operatorD/ onC∞(Σ, SE) satisfies three fundamental conditions, namely

• It is an odd operator, i.e.D/ : C∞(Σ, S±
E ) → C∞(Σ, S∓

E ).
• It respects theC-module structure ofC∞(Σ, SE), i.e.D/ satisfies(2.29).
• It transforms homogeneously under local gauge transformations(2.21) and (2.22), i.e.
D/ �→ gD/g−1.

In particular, there is a one-to-one correspondence between Dirac operators which are
compatible with a given Clifford action and Clifford superconnections[13] so thatD/ and
S carry the same information. In this sense, superconnections may be thought of as quanti-
zations of ordinary connections[11].

2.4. Transgression and descent equations

Most of our subsequent analysis will rely on the computation of gauge anomalies as-
sociated with the brane–antibrane system. In this section, we will show how the standard
formalism for Yang–Mills anomalies carries over to the case of superconnection gauge
fields. For this, we consider an arbitrary functionI (A, FA) of a superconnectionA and its
curvatureFA. We introduce the integral operator

KI (A, FA) =
∫ 1

0
dt K(t)I (tA, FA(t)), (2.40)

whereFA(t) = t dA + t2A ∧ A is the curvature associated withtA which is a path in
field space connecting the superconnection gauge fields 0 andA, and the anti-differential
operatorK(t) is defined byK(t)(tA) = 0,K(t)FA(t) = tA. From this definition, we can
infer the generalization of the Cartan homotopy formula

I (A, FA) = (Kd + dK)I (A, FA). (2.41)

We will now specialize to the case of the invariant polynomialI (A, FA) = Tr+(FA)n,
wheren ≥ 1 and Tr+(·) = Tr(ε·) is the supertrace in the fundamental representation of the
brane–antibrane gauge groupU(N+)×U(N−). This polynomial is a closed form, because
the Bianchi identity(2.10)implies

d Tr+(FA)n = Tr+(d(FA)n + [A∧,(FA)n]+) = 0. (2.42)

The important property of this closed differential form is that its cohomology class is
independent of the choice of superconnectionA [11]. To see this, letAs , s ∈ R, be a
one-parameter family of superconnections with curvaturesFs = (As)

2. Then

∂Fs

∂s
=
[
As ,

∂As

∂s

]+
, (2.43)
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and applying this result to the invariant polynomial Tr+(Fs)
n gives

∂ Tr+(Fs)
n

∂s
= nTr+

∂Fs

∂s
∧ (Fs)

n−1 = nTr+
[
As ,

∂As

∂s
(Fs)

n−1
]+

= d Tr+
∂As

∂s
(Fs)

n−1, (2.44)

showing that any continuous deformation of the form Tr+(FA)n changes it by an exact
form. In particular, the cohomology class determined by it is independent of the choice of
profile for the tachyon fieldT , a fact which will be exploited throughout this paper.

From(2.42), we arrive at the generalized transgression formula[42]

Tr+(FA)n = dξ (0)2n−1(A, FA), (2.45)

whereξ (0)2n−1 is a generalized Chern–Simons form which using the homotopy formula(2.41)
can be written as

ξ
(0)
2n−1(A, FA) = KTr+(FA)n = n

∫ 1

0
dt Tr+A ∧ FA(t)

n−1. (2.46)

The form(2.46)is the first member of the BRST complex constructed from the Lie algebra
cohomology ofU(N+) × U(N−). Let δBRST be the corresponding co-boundary operator
which is associated with the infinitesimal gauge transformations(2.21). The BRST ghost
field Λ = Λ+ ⊕ Λ− is the Cartan–Maurer one-form on the brane–antibrane gauge group,
i.e. the tautological one-form

Λ = g−1δBRSTg (2.47)

at the identity element which sends a Lie algebra element onto itself. It satisfies the
Cartan–Maurer equation

δBRSTΛ = −Λ ∧ Λ. (2.48)

The other terms in the BRST complex are then obtained by replacing the superconnection
via A �→ A + Λ and with the curvature associated with the operatord + δBRST. The
appropriate generalizations of(2.46)then come from the paths of superconnections in field
space which connectΛ with A+ Λ, and also 0 withΛ. They, respectively, read

ξ
(k)
2n−1−k =

{
n
∫ 1

0 dt Tr+[A ∧ (FA(t) + (1 − t)dΛ)n−1](k) for k = 0,1, . . . , n − 1,

n
∫ 1

0 dt Tr+[Λ ∧ (t dΛ + (t2 − t)Λ ∧ Λ)n−1](k) for k = n, n + 1, . . . ,2n,
(2.49)

where the bracket [·](k) indicates to extract the terms of degreek in the BRST ghost
field Λ.

The forms(2.49)are related to one another through the descent equations[43]

δBRSTξ
(k)
2n−1−k = −dξ (k+1)

2n−k−2, k = 0,1, . . . ,2n − 1. (2.50)

The co-cyclesξ (k)2n−1−k may also be obtained in a somewhat more geometric way via the
Cheeger–Simons construction[44]. For this, we fix a superconnection on the graded uni-
versal bundleEG → BG, whereBG is a smooth classifying space of the brane–antibrane
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gauge groupG = U(N+) × U(N−). Let ξ̂ (k)2n−1−k be a co-cycle representative of the
Chern–Weil form associated to a Chern–Simons characteristic class inH 2n−1−k(BG,R).
Given a Chan–Paton superbundleE → Σ with superconnectionA, let f : Σ → BG be
the map induced from a homotopy class ofG-equivariant classifying maps onE → EG.
Then the Chern–Simons co-cycle ofA is given by the pullback

ξ
(k)
2n−1−k = f ∗ξ̂ (k)2n−1−k ∈ H 2n−1−k(Σ,R). (2.51)

By suitably integrating the forms(2.51) over cycles of the worldvolumeΣ , one ob-
tains a family of co-cycles CS(k)2n−1−k, δBRSTCS(k)2n−1−k = 0, in the BRST cohomology
Hk(U(N+) × U(N−),R) of the brane–antibrane gauge group. In what follows we shall
deal mostly with the topological anomaly CS(1)

2n−2 ∈ H 1(U(N+) × U(N−),R) which
corresponds to thek = 1 term in(2.50). The form

ξ
(1)
2n−2 = n(n − 1)

∫ 1

0
dt (1 − t)STr+ Λ ∧ d(A ∧ FA(t)

n−2) (2.52)

is then the solution to the Wess–Zumino consistency condition[43] for the chiral gauge
anomaly in the brane–antibrane worldvolume field theory, where

STr(M1, . . . ,Mn) = 1

n!

∑
π∈Sn

Tr(Mπ1 · · ·Mπn) (2.53)

is the symmetrized trace. For example, settingn = 2 in the above formulas yields the
generalized Chern–Simons form

ξ
(0)
3 (A, FA)= Tr(A+

(1) ∧ dA+
(1) + 2

3A
+
(1) ∧ A+

(1) ∧ A+
(1))

−Tr(A−
(1) ∧ dA−

(1) + 2
3A

−
(1) ∧ A−

(1) ∧ A−
(1))

+Tr(TDT† + T †DT). (2.54)

The first two terms in(2.54)are the standard three-dimensional Chern–Simons terms for
the gauge fields on the branes and antibranes, respectively. The last term represents the
modification of the ordinary anomaly formula due to the tachyon field.

The analysis of this section shows that the standard techniques for dealing with gauge
anomalies carry through to the case of superconnections, with the appropriate modifica-
tions. It is also possible to incorporate modifications due to the gravitational terms on the
brane–antibrane system by constructing superconnections from the generalized Dirac oper-
ators of the previous section. We shall return to this point inSection 6. Brane actions based
on transgression forms have been constructed from a different point of view in[45].

3. Ramond–Ramond couplings on brane–antibrane systems

In this section, we will apply the previous considerations to a systematic derivation
of the Ramond–Ramond couplings of brane–antibrane pairs. Amongst other objects, the
brane–antibrane worldvolumeΣ has spinor fieldsΨ defined on it with kinetic term of the
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form Ψ̄ iD/ Ψ in the total Lagrangian of the worldvolume field theory. If the fermion fields
are chiral, then the functional integral over them yields the regularized determinant of the
(generalized) Dirac operatorD/ . By incorporating supergravity couplings to the D-branes,
the effective path integral measure for the brane–antibrane system will therefore contain
the factor

Θ = det(iD/ )eiZ. (3.1)

Here

Z = −µ

2

∫
Σ

C ∧ Y, (3.2)

whereµ is a charge associated with the branes,C = φ∗C = ∑
p φ∗C(p) the pullback to

Σ↪→φX of the total RR potential,3 and the couplingY will be determined in what follows as
an invariant polynomial of the gravitational and gauge curvatures onΣ . The determinant in
(3.1)depends on the various bosonic fields which couple toΨ and which live in a parameter
spaceM. In many instances, it is not a function onM but rather a section of a complex line
bundleP(D/ ) →M [46]. For chiral fermion fields, there is an obstruction to constructing a
gauge-invariant regularized determinant of the Dirac operatorD/ . It is the topological chiral
anomaly which is measured by the first Chern class of the determinant line bundle over
M. A two-form representative for this Chern class can be constructed as the transgression
of the one-form CS(1)2n−2. If H+ denotes the positive energy spectral subspace of iD/ , then
the cohomology class [H+] ∈ H 2n−1(M,Z) measures the corresponding obstruction. The
chiral gauge anomaly is the obstruction to constructing a corresponding global, non-zero
trivializing section onM→ P(D/ )which would allow the remaining functional integration
overM to be carried out in the brane–antibrane quantum field theory. The topology of the
determinant line bundleP(D/ ) is given by the Atiyah–Singer index theorem[47], which
when expressed in differential geometric terms gives explicit forms for the chiral anomaly
[48].

On the other hand, action(3.2) is not in general invariant under local gauge transforma-
tions of the Ramond–Ramond tensor potentials. Its exponential in(3.1) is therefore not a
function onM→ S1, but rather a unit norm section of a complex line bundle over the pa-
rameter spaceMwhich is not necessarily covariantly constant. To make the brane–antibrane
worldvolume quantum field theory well-defined, we will demand that the product of sec-
tions in(3.1)be a globally well-defined function onM, i.e. that e−iZ be a trivializing section
for det iD/ . This will uniquely fix the form of the Ramond–Ramond coupling(3.2) to the
brane–antibrane system. As in the previous section, we shall throughout assume that the
worldvolume manifoldΣ admits a spinc-structure, which is equivalent to a certain topo-
logical constraint on the supergravity background that we shall discuss later on. This is the
case for D-branes which wrap supersymmetric cycles in all Type II compactifications with
vanishing cosmological constant[49].

3 We will assume throughout that the worldvolumeΣ is embedded in the space–timeX. While this requirement
is not completely necessary, it will simplify some of the calculations in what follows.
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3.1. Anomalous couplings

The perturbative, chiral gauge anomaly on the brane–antibrane worldvolume may be
computed as the index of an appropriate Dirac operator[48]. For this, we first need to
identify the massless spectrum in the brane–antibrane worldvolume field theory. As we
have mentioned, after the GSO projection, there remains chiral fermion zero modes in the
p–p andp̄–p̄ open string sectors, but not in thep–p̄ sectors. In these latter sectors there are
of course the superpartners of the tachyon fields, which are massless bi-fundamental fermion
fields of opposite chirality. The fermions are all in a one-to-one correspondence with the
relevant open string Ramond sector ground states. Open string quantization requires them to
be sections of the spinor bundle lifted from the space–time tangent bundleT (X) restricted to
Σ , T (X)|Σ = TΣ ⊕NΣ , whereNΣ is the normal bundle toΣ in X. The GSO projection
restricts the fermions to have definite and opposite chiralities in thep–p andp̄–p̄ sectors,
and also in thep–p̄ andp̄–p sectors, with respect to the local space–time Lorentz group
SO(9,1). Upon dimensional reduction from the space–time manifoldX to the worldvolume
manifoldΣ ⊂ X, the space–time Lorentz group is broken to the(p+1)-dimensional local
Lorentz group ofΣ plus a global R-symmetry group corresponding to the structure group of
the normal bundleNΣ , i.e. SO(9,1) → SO(p,1)×SO(9−p). This implies that a section of
T (X) in a representationR when restricted toΣ will decompose into sections ofTΣ⊗NΣ

in representationsRa
T ⊗ Ra

N. In particular, a chiral spinor field onX will decompose into a
multiplet of chiral fermion fields transforming under the adjoint representation

ρ = (N+ ⊗ N+) ⊕ (N− ⊗ N−) ⊕ (N+ ⊗ N−) ⊕ (N− ⊗ N+) (3.3)

of the brane–antibrane Chan–Paton structure groupU(N+)×U(N−). This is the structure
that is required of the superpartners for the lowest components of the superconnection gauge
fields(2.6). The Chan–Paton bundlesE± are combined into the superbundleE = E+⊕E−
and tensored with the appropriate spinor bundle. The above arguments imply that the total
Z2-grading is then the canonical tensor product grading, as in(2.28), i.e. the chiral fermion
fields onΣ are the sections

Ψ = Ψ+ + Ψ−, Ψ± =
(
ψ+
(∓)

ψ−
(±)

)
∈ C∞(Σ, S±

E ). (3.4)

The fluctuations of these chiral fermion fields lead to quantum anomalies in the brane–
antibrane worldvolume effective field theory. There are several ways to argue that these are
the only anomalies produced. For instance, one may argue as we have above from the basic
properties of the GSO projection, or alternatively by examining the massless spectrum of
the intersection of two brane–antibrane systems as we will briefly describe later on. One
subtlety concerns the fact that the brane–antibrane system is actually unstable. The fact that
one is not sitting in the true vacuum of the theory in making these arguments makes them
a little suspect. However, it is believed that supersymmetry is not a necessary requirement
in identifying these chiral fermionic zero modes, i.e. even for non-supersymmetric brane
configurations it is still possible to correctly capture the massless fermionic content as
above[16,20]. In any case, we assume that this is indeed the appropriate ground state that
remains after tachyon condensation on the brane–antibrane system. This assumption may
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be motivated by the fact that it will lead to the appropriate massless spectrum of induced
lower-dimensional D-brane charges that remain after the tachyonic Higgs mechanism.

We may now proceed to use the standard topological index formula[50]. For this, we
consider the appropriate spinor bundleS(Σ) = S(T Σ) ⊗ S(NΣ) = S+(Σ) ⊕ S−(Σ),
whereS(T Σ)andS(NΣ)are the spinor bundles lifted from the tangent and normal bundles
to Σ in X, respectively, and we use the standard tensor product grading

S±(Σ) = (S±(T Σ) ⊗ S+(NΣ)) ⊕ (S∓(T Σ) ⊗ S−(NΣ)). (3.5)

The open string ground states in the Ramond sector are sections ofS(T Σ), while those of
the Neveu–Schwarz sector are sections ofS(NΣ). We then incorporate the Chan–Paton
superbundle by definingE = S(Σ)⊗Eρ = E+⊕E−, whereρ is theU(N+)×U(N−) rep-
resentation(3.3)carried by the fermionic open string zero modes. The appropriate grading
is then taken to be

E± = (S±(Σ) ⊗ E+
ρ ) ⊕ (S∓(Σ) ⊗ E−

ρ ). (3.6)

The Dirac operatorD/ , constructed as above from the appropriate lifted spinor bundles,
defines the two-term complex

C∞(Σ, E±) D
/→C∞(Σ, E∓), (3.7)

and the standard index theorem applied to the superbundleE → Σ yields

index iD/ = (−1)(p+1)(p+2)/2
∫
Σ

ch+(E) ∧ Td(T Σ ⊗ C)

χ(TΣ)
. (3.8)

Here ch+(E) denotes the Chern character of the superbundleE which may be represented
by the closed differential form[11]

ch+(E) = Tr+ exp
1

2π i
FE, (3.9)

whereE is a superconnection onE and the supertrace is taken over theZ2-graded Hilbert
spaceH = H+⊕H−, withH± = C∞(Σ, E±).4 The grading automorphism(2.19)satisfies
εD/ = −D/ ε. The second factor in(3.8)is a standard characteristic class which depends only
on the topology of the brane worldvolume manifold. For any oriented real vector bundle
V → Σ , χ(V ) denotes the cohomological Euler class ofV , i.e. the restriction of the Thom
classΦ(V ) to the zero sectionHp+1(V ,Z) ∼= Hp+1(Σ,Z), while Td(V ⊗ C) is the Todd
class of the complexification ofV . The latter class may be related to Atiyah–Hirzebruch
classÂ(V ) by

Â(V ) = ed(V )/2 ∧
√

Td(V ⊗ C), (3.10)

where the degree 2 integral characteristic classd(V ) determines a spinc-structure onV and
may be defined as follows. The group homomorphism

spinc(p + 1) = (spin(p + 1) × U(1))

Z2
→ U(1) (3.11)

4 More precisely,H is theL2-norm completion of the space of smooth sections onΣ → E with inner product
defined with respect to the Riemannian volume formd vol(Σ) of Σ .
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induces a mapH 1(Σ, spinc(p+1)) → H 1(Σ,U(1)) on cohomology, from which we may
associate a complex line bundleLV → Σ to the vector bundleV . Thend(V ) is defined as
the first Chern classc1(LV ) of this line bundle, and its mod 2 reduction yields the second
Stiefel–Whitney classw2(V ).

The index formula(3.8) can be expanded by using the fact that the Chern character
respects the semi-ring structure as a mapV �→ ch+(V ) from bundles to cohomology
classes, i.e. ch+(V ⊕W) = ch+(V )+ ch+(W) and ch+(V ⊗W) = ch+(V )∧ ch+(W) so
that

ch+(E) = ch+
ρ (E) ∧ ch+(S(T Σ)) ∧ ch+(S(NΣ)), (3.12)

where ch+ρ denotes the Chern character as in(3.9) but with the supertrace taken in the
representation(3.3) of the Chan–Paton structure group. Furthermore, ifV → Σ is any
oriented real spinc-bundle andS(V ) = S+(V ) ⊕ S−(V ) the spinor bundle lifted fromV ,
then we have the identity

ch+(S(V )) = ed(V ) ∧ χ(V )

Â(V )
. (3.13)

Combining the above relations, we may write(3.8)finally as

index iD/ =
∫
Σ

ch+(E) ∧ ch+(Ē) ∧ ed(NΣ) ∧ Â(T Σ)

Â(NΣ)
∧ χ(NΣ), (3.14)

whereĒ is the complex conjugate of the superbundleE. The Chern characters in(3.14)
may be represented in terms of supertraces in the fundamental representation ofU(N+)×
U(N−) and the curvatureFA of a superconnection onE [11], as described in the previous
section. We have used the properties ch+

ρ1⊗ρ2
(V ) = ch+

ρ1
(V ) ∧ ch+

ρ2
(V ) and ch+ρ̄ (V ) =

ch+
ρ (V̄ ) for unitary gauge bundlesV → Σ . Note that the classd(NΣ) also determines the

spinc-structure onΣ itself [9,23].
The perturbative chiral gauge anomaly is related to the index(3.14) in the usual way

[51,52]by the descent formulaA = 2π i(index iD/ )(1) where, for any invariant polynomial
I of the Chan–Paton gauge bundleE, I (1) denotes its Wess–Zumino descendent which
is constructed as inSection 2.4. Namely, we decomposeI = I0 + dI (0) locally, where
I0 is the constant part ofI andI (0) its secondary characteristic. ThenI (1) is defined via
the gauge variationδBRSTI

(0) = dI (1). In fact, the derivation given above can be applied
straightforwardly to compute the anomaly on an ordinary D-brane system, by noting that
any vector bundleV → Σ can be triviallyZ2-graded by settingV + = V andV − =
Σ × {0}. This defines an even grading with grading automorphismε = 1. The Chern
characters(3.9) then coincide with the usual (ungraded) ones. As is the usual case, these
quantum anomalies should cancel the classical anomalies which arise due to the magnetic
RR interactions of D-branes. This standard argument[8,19–21]is of a cohomological nature
and can be straightforwardly adapted to brane–antibrane systems[16]. We will therefore
be brief.

Given a closed brane–antibrane worldvolumeΣ , we postulate a coupling to the space–time
Ramond–Ramondp-form fieldsC(p) of the form(3.2), where the couplingY is determined
by demanding that the classical and quantum anomalies cancel each other. We integrate
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(3.2)by parts and rewrite it in terms of the constant partY0 and the descendentY(0) of Y,
i.e.Y = Y0 + dY(0) with δBRSTY(0) = dY(1). The zero modeY0 may be set to unity by
suitably normalizing the chargeµ. With G = dC, the total RR field strength, we then have

Z = −µ

2

∫
X

δ(Σ) ∧ (C − (−1)σG ∧ Y(0)), (3.15)

whereσ = 1 (resp.σ = 0) for Type IIA (resp. Type IIB) D-branes, andδ(Σ) is the de Rham
current which is a delta-function supported representative of the Poincaré dual cohomology
class to the embeddingΣ↪→φX. Globally,δ(Σ) is a section of the normal bundleNΣ with
compact support. It may be represented locally onΣ by taking the zero section ofNΣ . On
the other hand, in cohomologyδ(Σ) may be identified with the Thom classΦ(NΣ) of the
normal bundle whose zero section is the Euler classχ(NΣ). It follows that the de Rham
current possesses the global property[20]

δ(Σ) ∧ δ(Σ) = δ(Σ) ∧ χ(NΣ). (3.16)

The coupling(3.15)modifies the RR equations of motion and Bianchi identity. In par-
ticular,G is no longer a closed form, because

dG = −µδ(Σ) ∧ Ȳ, (3.17)

whereȲ is obtained fromY by complex conjugation of the corresponding Chan–Paton
gauge group representation. The minimal expression for the field strengthG is then

G = dC − (−1)σµδ(Σ) ∧ Ȳ(0) (3.18)

with Ȳ(0) the secondary characteristic ofȲ. By demanding thatG be gauge-invariant, it
follows that the potentialC must acquire an anomalous gauge transformation in order to
compensate the gauge variation of the second term in(3.18),

δBRSTC = µδ(Σ) ∧ Ȳ(1), (3.19)

where Ȳ(1) is the Wess–Zumino descendent ofȲ. Thus, under a gauge transformation
δBRST, one finds that the RR couplings(3.15)yield a gauge anomaly given by

δBRSTZ = −µ2

2

∫
X

δ(Σ) ∧ δ(Σ) ∧ (Y ∧ Ȳ)(1). (3.20)

By using(3.16), we find that the magnetic RR coupling onΣ is anomalous.
The corresponding classical anomaly inflow is given byA = 2π i

∫
Σ
I (1), where

I = −µ2

4π
Y ∧ Ȳ ∧ χ(NΣ). (3.21)

The anomalous form(3.21) is of the same type as the integrand of(3.14), and it implies
that the anomalous RR coupling on the brane–antibrane system is given by

Y = ch+(E) ∧ ed(NΣ)/2 ∧
√

Â(T Σ)

Â(NΣ)
. (3.22)
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The classical and quantum anomalies will thereby cancel provided thatµ = √
2π , which

is the correct quantum of RR charge (in string units). Furthermore, these choices can-
cel the anomalies which arise from the magnetic RR interactions between two different
brane–antibrane systems, i.e. on the I-branesΣ12 = Σ1 ∩Σ2 [8,19–21]. Then, in addition
to the chiral massless fermions required by open string quantization and the GSO projec-
tion, there are massless spinors which arise from the open string sectors which start inΣ1
and end inΣ2. Because of the previously stated properties of the GSO projection, the only
fermionic zero modes which can arise in this way come from the open string sectors which
begin on a brane (resp. antibrane) and end on another brane (resp. antibrane). Thus the
index theoretical calculation on an I-braneΣ12 will go through in exactly the same way as
before, and produce a quantum anomaly which cancels the classical I-brane anomaly inflow
as above.

Although the derivation above formally captures the dependence of the RR couplings on
the superconnection gauge fields, it should be noted that while they do naturally arise from
the pertinent index theorem, the anomaly inflow arguments are not sufficient to determine
the tachyon terms in the action.5 This follows from the fact that inflow determines the
couplings only up to gauge-invariant terms. One can change representative of the cohomol-
ogy class(3.22)to Y + dV, whereV is any local, gauge-invariant polynomial. For closed
Ramond–Ramond potentialsC, such extra terms do not contribute to the charge. Since the
tachyon-dependent terms in the superconnection Chern character(3.9)are precisely of this
gauge-invariant form, the tachyon-dependent parts of the RR couplings can be cancelled in
this way. Of course, this immediately follows from the fact, proven inSection 2.4, that the
cohomology classes generated by ch+(E) are independent of the tachyon fieldT . Put dif-
ferently, the worldvolume fermionic zero modes are not charged with respect to the tachyon
background. Nevertheless, since the usual anomaly analysis, based on the index theorem,
applied to the worldvolume gauge fields involves the Chern character of a superbundle, we
shall choose the most general representative which involves a non-zero tachyon fieldT . As
we will see, this formula leads to the correct results for the tachyonic couplings on non-BPS
systems of branes and, moreover, determines the appropriate relationship between D-brane
charges and K-homology.

3.2. Complete Chern–Simons action

Before writing down the final version of the anomalous coupling on a brane–antibrane
system, there are some aspects of the above derivation that we should first discuss. We shall
work in the static gauge of the worldvolume diffeomorphism group which may be defined
as follows. We split the local coordinates ofX into longitudinal and transverse coordinates
with respect toΣ , xa = (xµ, xi), and use space–time diffeomorphism invariance to fix
Σ at the coordinatesxi = 0 for i = p + 1, . . . ,9. Then we use worldvolume diffeomor-
phism invariance to identify the longitudinal coordinates with those ofΣ , xµ = ξµ for
µ = 0,1, . . . , p. For multiple branes and antibranes, we should identify the transverse
coordinates to the worldvolumeΣ with matrices in the Lie algebra of the brane–antibrane

5 The author is grateful to F. Larsen for pointing out this to him.
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gauge groupU(N+) × U(N−), xi = X i , where

X i =
(
φi+ 0

0 φi−

)
. (3.23)

TheN+ ×N+ (resp.N− ×N−) Hermitian matricesφi+ (resp.φi−) describe the 9−p trans-
verse degrees of freedom of the branes (resp. antibranes). They transform in the adjoint rep-
resentation ofU(N+) (resp.U(N−)) and correspond to the fields of the R-symmetry group
SO(9 − p) of the dimensionally reduced Yang–Mills gauge theory to the brane–antibrane
worldvolume. From a global perspective, we may use the Riemannian structure on the
space–time manifoldX to identify the normal bundleNΣ with a tubular neighbourhood of
the worldvolumeΣ in X. Then the transverse degrees of freedom of the brane–antibrane
system wrappingΣ which are described by sections ofNΣ are augmented to sections of the
U(N+)×U(N−) bundleNΣ⊗(End(E+)⊕End(E−)). Note that the total brane–antibrane
scalar fields(3.23)are block-diagonal because the GSO projection eliminates the scalar de-
grees of freedom in thep–p̄ open string sectors. In these sectors there are of course the
remnant tachyon fields, but these are objects which live in the worldvolume theory itself
and are not attributed to the transverse degrees of freedom of the branes and antibranes. We
shall see below how to include the modifications due to the tachyonic degrees of freedom.

The standard definition of pullbacks should then be altered so as to replace all transverse
coordinates with the matricesX i and all worldvolume derivatives with covariant ones
[26,27]. In order to obtain a covariant expression, we must also account for the possible
non-trivial normal bundle topology and the fact that the transverse scalar fields are really
sections ofNΣ . Let αm

i , m = p + 1, . . . ,9, span a frame inNΣ , and introduce the

connectionΘm
µn = αm

j ∂µα
j
n on the normal bundle to the brane–antibrane worldvolume.

Then, on the Ramond–Ramond fields, the definition of the pullbackφ∗ induced by the
embeddingΣ↪→φX is taken to be

(φ∗C(p))µ1···µp

= C(p)µ1···µp
+

p∑
k=1

C(p)i1···ik{µ1···µp−k
∇N
µp−k+1

Xm1αi1
m1

· · · ∇N
µp}X

mkαik
mk

, (3.24)

where

∇N
µ X

mαi
m = (DµX

m + Θm
µnX

n)αI
m, (3.25)

andDµ is the covariant derivative defined as in(2.16). This produces a non-trivial interaction
between the Ramond–Ramond fields and the non-abelian transverse excitations of the branes
and antibranes. In the case of multiple D-branes alone, there are in addition multipole
terms and other commutator terms which couple to the background supergravity fields
[26]. These terms are required by T-duality and in order to match results from Matrix
theory. In the present case, we will impose such requirements, in addition to the pullback
definition(3.24), for the sake of matching with the recent observations concerning D-brane
effective actions. The matrix structure of the transverse coordinates for multiple branes
and antibranes will become important later on and will lead to a D-brane action which is
explicitly T-duality-invariant.
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First of all, the background space–time fields restricted to the worldvolumeΣ are formally
regarded as functions of the transverse coordinates, under the identificationxi = X i . This
is achieved by using the formal Taylor series expansions of the fields in the transverse
coordinates and it defines couplings of their multipole moments to the adjoint scalar fields
X i . For instance, for the RR tensor potentials we write

C(p)a1···ap = C(p)a1···ap (ξ
µ,0)

+
∞∑
n=1

1

n!

∂

∂xi1
· · · ∂

∂xin
C(p)a1···ap (ξ

µ, xi)

∣∣∣∣∣
xi=0

X i1 · · ·X in . (3.26)

The couplings in(3.26)may be obtained by application of the operator expJX d⊥|x⊥=0 =
expX i (∂/∂xi)|xi=0 to the fieldC(p), whereJX is the interior multiplication operator with
respect toX i of degree−1 and d⊥ the exterior derivative on the normal bundleNΣ . Of
course, in the caseN+ = N− = 1, the scalar fieldsφi+, φi− coincide with the transverse
coordinatesxi themselves and all higher partial wave couplings in(3.26) disappear. In
addition, we need to insert a coupling of the background fields to commutators of the scalar
fields (3.23). This is again achieved via action of the interior multiplication operator as
ei(JX )2C(p). Using antisymmetry of the components of the differential formC(p), thenth
term (with 2n ≤ p) in the expansion of this object is given by

[(JX )2nC(p)]a1···ap−2n = 1

2n

(
p

2n

)C(p)i1···i2na1···ap−2n [X i1,X i2] · · · [X i2n−1,X i2n ].

(3.27)

In addition, T-duality invariance requires the background fields to couple to the tachyon
field, because such couplings are induced by T-duality transformations of the one-form parts
F(1) of the superconnection field strengths in(2.13) [6,32]. The appropriate modification
comes from replacing the operator(JX )2 by

JX (T )2 = (JX )2 + i


JX ,


 0 T †

T 0




 . (3.28)

Having described the appropriate physical alterations of the anomalous couplings which
must be made for multiple branes and antibranes, we now turn to a discussion of the
factor ed(NΣ)/2 in (3.22), which accounts for the spinc-structure onΣ and can induce
charge shifts of degree 2 on the brane–antibrane worldvolumeΣ . If Σ is a connected al-
most complex manifold, then the classd(NΣ) ∈ H 2(Σ,Z) can be represented by the
first Chern class of the normal bundle asd(NΣ) = −c1(NΣ). If the worldvolumeΣ
were not a spinc-manifold, then one would have to incorporate a topologically non-trivial
Neveu–Schwarz two-form fieldB into the string background in order to cancel certain
worldsheet anomalies[9,22,23]. The result of this cancellation is that it trivializes a certain
line bundle over the loop space of the brane worldvolume which is defined by two-cycle
holonomies ofB. In the purely bosonic case this would imply that theB-field restricted
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to Σ is necessarily topologically trivial[23]. For the full superstring theory, this is not
the case, but the topological type ofB restricted toΣ is uniquely determined by the bun-
dle trivialization property. AB-field onΣ is classified topologically by its characteristic
classφ∗[H ] ∈ H 3(Σ,Z) which as a differential form is represented by the pullback of
the field strengthH = dB. B being topologically trivial means thatφ∗[H ] vanishes as
an integral cohomology class, and not only in real cohomology. The bundle trivializa-
tion just mentioned is equivalent to the conditionφ∗[H ] = W3(Σ), whereW3(Σ) ∈
H 3(Σ,Z) is the Dixmier–Douady-invariant which may be defined as the image of the
second Stiefel–Whitney classw2(Σ) ∈ H 2(Σ,Z2) under the appropriate connecting ho-
momorphism (the Bockstein map) in cohomology[9,22,23]. The cancellation of global
worldvolume anomalies in the previous section required thatΣ admit a spinc-structure,
which is equivalent toW3(Σ) = 0. Thus the restriction ofB to Σ is topologically trivial.
Furthermore, in that case, in order to cancel the worldsheet anomalies requires that the brane
worldvolume gauge fields define spinc-connections, rather than single-valued ones. But this
is precisely what we assumed inSection 2when we used the superconnection gauge field
A to define a Clifford superconnectionS, and ultimately the appropriate Dirac operator
D/ which allowed us to compute the anomalous couplings to the RR fields. These remarks
illustrate the consistency of the present analysis thus far. It would be interesting to extend
the analysis to topologically non-trivialB-fields and hence worldvolumesΣ which do not
admit spinc-structures.

For the purposes of analysing the anomalies in the brane–antibrane worldvolume field
theories, we should therefore incorporate a topologically trivial Neveu–Schwarz two-form
field. This is included via two-cycle holonomies ofB. The final object we need to take
special care of is the topological normal bundle correction term in(3.22). This can be
properly incorporated by covariantizing the couplings that we have described above[27].
DefiningC′ = C ∧ e−φ∗B/2π i , taking into account the non-abelian dynamics of D-branes
amounts (for topologically trivial NS–NSB-field) to replacing in action(3.2) the exterior
productC′ ∧ Y by Clifford multiplication defined through the symbol map

σC′(Y) = C′ ∧ Y − JC′Y, (3.29)

when the couplings are expressed in terms of bulk quantities as in(1.2). This overall modi-
fication by the spin geometry ofX fits very nicely into the present formalism. However, we
will not write the Clifford multiplication explicitly and only assume its presence implicitly
when we write exterior products withC′.

We have thus found that the anomalous, Chern–Simons couplings on a brane–antibrane
system wrapping a worldvolumeΣ of dimensionp + 1 are given by

Z = −
√

2π

2

∫
Σ

Tr(−1)F φ∗

×

exp

{
i(JX )2−

[
JX ,

(
0 T †

T 0

)]}
eJX d⊥

∣∣∣∣∣
x⊥=0

4+σ∑
p=0

C(2p+1−σ)∧e−B/2π i




∧ exp
1

2π i
FA ∧

√
Â(RT)

Â(RN)
∧ ed(NΣ)/2. (3.30)
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The trace in(3.30)is taken in the fundamental representation of theU(N+)×U(N−) gauge
group, with(−1)F the grading automorphism of the brane–antibrane pairs andFA the field
strength(2.20)of the superconnection which depends on the worldvolume gauge fields and
the brane–antibrane tachyon field (here we takeG = 1 in (2.38)). The matrix products in the
argument of the trace in(3.30)must be given an appropriate ordering prescription, which
we take to be the symmetrized trace defined by(2.53) [26]. This trace symmetrization will
also be implicitly assumed in the following. The third term in(3.30)gives the appropriate
gravitational couplings of the fields, withRT (resp.RN) the Riemann curvature two-form
of the tangent (resp. normal) bundle, and

Â(R) =
∏
a≥1

ra

sinhra
, (3.31)

where 4πra are the skew-eigenvalues ofRab. Action (3.30) agrees with the form of the
brane–antibrane coupling originally proposed in[14]. Notice, however, that the formula
(3.30) is ambiguous with respect to on-shell terms such as the equation of motion for
the tachyon field. The superconnection formalism employed above gives a unique off-shell
prescription for the RR charges, alternatively to the boundary string field theory prescription
used in[5]. The physical implications of this will be that the index theoretical calculations
automatically lead to the relationships between D-brane charges and K-theory, as will be
extensively described inSection 6.

3.3. Tachyon condensation

There is another natural-invariant action that can be constructed using the superconnection
formalism. For this, we consider the natural inner product density(·, ·) on the algebra
Ω(Σ,EndE) of sections of the endomorphism bundle defined by

(A,B) = Tr(B† ∧ ∗A), (3.32)

where∗ denotes the Hodge star-operator onΣ . This is the inner product density that is
canonically inherited fromΩ(Σ). If ‖ · ‖ denotes the corresponding norm density, then we
can write down a Euclidean action in the form

Zkin = 1

2

∫
Σ

‖FA − G‖2 = 1

2

∫
Σ


∑

k≥1

‖F(k)‖2 + ‖F(0) − G‖2


 , (3.33)

where

G =
(
G+ 0
0 G−

)
(3.34)

is a constant abelian flux with(G±)† = G±. Expanding(3.33)out using(2.12)–(2.14)then
leads to

Zkin =
∫
Σ

dvol(Σ)Tr

[
1

2
(F+

µν)
2 + 1

2
(F−

µν)
2 + |DµT |2 + 1

2
(T †T − G+)2

+1

2
(TT† − G−)2 + · · ·

]
. (3.35)
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This is the general form of the brane–antibrane worldvolume action anticipated from
two-loop order, on-shell string theory scattering amplitudes[53]. Therefore, we see that
the superconnection formalism also gives a compact way of representing the kinetic terms
in the low-energy effective field theory. Terms involving the worldvolume scalar fields
(3.23)may be incorporated in a manner analogous to that described in the previous section
[26]. Higher-order corrections to(3.35)presumably come from a Born–Infeld expansion in
powers(FA)n of the superconnection curvature[15,34,35].

In particular, from the second line of(3.35) we obtain an explicit expression for the
tachyon potential. The minima of action(3.33)determine the tachyon condensatesTc which
are given by the equation

FA = G. (3.36)

This condition requires, among other things, covariantly flat gauge field configurations on
the branes and antibranes, and a covariantly constant tachyon field. There are two special
cases whereby the variationalequation (3.36)can be solved with ease. IfG = 0, there is
a unique solutionTc = 0 giving aU(N+) × U(N−)-invariant vacuum. In this case there
is no symmetry breaking. IfG = m21 with m2 > 0 andN+ = N− = N , thenT †

c Tc =
TcT

†
c = m21 andTc establishes an isomorphism between the fibre spacesE+

x andE−
x of

the Chan–Paton superbundleE → Σ . Conversely, any such isomorphism yields a tachyon
condensateTc. This configuration breaks theU(N) × U(N) gauge symmetry group down
to its diagonal subgroupU(N)diag. The constant operatorG is a constant abelian flux on the
brane–antibrane worldvolume, and the tachyon field is asymptotically a bundle isomorphism
between the branes and antibranes where it reaches its vacuum expectation value. Thus we
recover the standard requirements for tachyon condensation in brane–antibrane systems
[1,2,9,10,54]. Here we have derived them from a purely geometric formalism, which also
allows for more general symmetry breaking patterns.

The mechanism for symmetry breaking here is even more elementary, because it in
fact originates from the generalized Dirac operator(2.37)–(2.39). To see this, we use the
Lichnerowicz formula for the ordinary Dirac operators(2.39)to compute

D/
2 =

(
∆Σ + 1

4
rΣ

)
1N+|N−

+
(

Q(F+ + T †T ) D/
+
A(Gs ⊗ T †) + (Gs ⊗ T †)D/

−
A

D/
−
A(Gs ⊗ T ) + (Gs ⊗ T )D/

+
A Q(F− + TT†)

)
, (3.37)

where∆Σ is the Laplace–Beltrami operator,rΣ the scalar curvature of the worldvolume
Σ andQ = c ◦ σ−1 the quantization map. From(3.37), it follows that the Lagrangian of
(3.33)may be computed from the symbol map as

‖FA‖2 = Tr[σ ◦ c−1(D/
2
)]2. (3.38)

Therefore, both the topological and the Born–Infeld type action on the brane–antibrane sys-
tem can be derived from the Dirac operatorD/ . This is not surprising, since as we mentioned
in Section 2.3the Dirac operator carries the same amount of information as its corresponding
superconnection[13]. This property is even more apparent if we supersymmetrize action



R.J. Szabo / Journal of Geometry and Physics 43 (2002) 241–292 267

(3.33)by adding a fermion couplinḡΨD/Ψ , withΨ the spinor fields(3.4). Then the fermion
masses are induced by the Dirac operator and correspond to the tachyonic expectation val-
ues of the brane–antibrane pairs. The mass matrixGs ⊗ Tc of the fermion fields originate
from the quantum field theory of thep–p̄ open string ground states which are given by the
operator(2.38) [55]. Therefore, all the standard properties of tachyon condensation come
from a spectral action involving the relevant generalized Dirac operator. These facts will be
instrumental in the K-theory interpretation that we shall give inSection 6. Notice, however,
that(3.35)is not the full form of the kinetic part of the worldvolume action. In particular, it
only agrees with the results of[5] up to terms involving off-shell and also field-redefinition
ambiguities. The assumption that the kinetic terms can be written in terms of superconnec-
tion (or, equivalently, generalized Dirac operator) quantities alone implicitly imposes an
on-shell requirement.

Having established that the unstable brane–antibrane system will decay via a Higgs
mechanism, let us now examine the corresponding reduction of the Chern–Simons action
(3.30). First of all, we note that if the tachyon field is absent,T ≡ 0, then action(3.30)is a
sumZ = Z+ + Z−, where

Z± = ∓
√

2π

2

∫
Σ

Tr±φ∗
±


ei(Jφ± )2 eJφ±d⊥

∣∣∣
x⊥=0

4+σ∑
p=0

C(2p+1−σ) ∧ e−B/2π i




∧ exp
1

2π i
F± ∧

√
Â(RT)

Â(RN)
∧ ed(NΣ)/2. (3.39)

The± indices label the contributions from the branes and antibranes, respectively, so that
Tr± denotes the (symmetrized) trace in the fundamental representation ofU(N±). Thus
when the branes are well separated from the antibranes (so that there are no massless open
stringp–p̄ modes), the total Ramond–Ramond charge is given as the sum of RR charges
on the branes and antibranes. This includes the extra multipole couplings for non-abelian
systems as is required by T-duality[26]. Similarly, in this case action(3.35)decomposes
into a sum of Yang–Mills actions for the field strengthsF± on the branes and antibranes.
An interesting feature to examine in this context is the critical value of the tachyon field at
which the open stringp–p̄ modes become relevant again andZ �≡ Z+ + Z− [39]. Within
the present framework this is a difficult question to answer, however, because one would
need to use distinguishable D-branes with distinct worldvolume manifolds for the branes
and antibranes[53].

Now let us reinstate the tachyonic coupling and see how to realize a(p − 2k)-brane
in the worldvolumeΣ of thep–p̄ pairs[9,10]. For this, we assume that all length scales
of the problem are much larger than the string scale. We setN+ = N− and letΣ̃ be a
spinc-submanifold of co-dimension 2k in Σ . Then the normal bundleN(Σ̃,Σ) to Σ̃ in Σ

has structure group SO(2k). Let Σ̃ ′ be a tubular neighbourhood of̃Σ in Σ . SinceΣ̃ and
Σ only have spinc-structures defined on them, the spinor bundlesS±(N(Σ̃,Σ)) cannot in
general be constructed globally. LetLN → Σ̃ be the complex line bundle corresponding to
the integral cohomology classd(N(Σ̃,Σ)), i.e.c1(LN) = d(N(Σ̃,Σ)). Then, generally,
the square rootL1/2

N (with L
1/2
N ⊗ L

1/2
N = LN ) also cannot be constructed globally. When
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there is two-torsion in the cohomology groupH 2(Σ̃,Z), there are different square roots of
LN and hence more than one spinc-structure for a given classd(N(Σ̃,Σ)). However, the
twisted spinor bundles

S±
L

1/2
N

= L
1/2
N ⊗ S±[N(Σ̃,Σ)] (3.40)

do exist as vector bundles over̃Σ ′. This is the precise meaning of the existence of a
spinc-structure forΣ̃ , and also of the vanishing of the global worldsheet anomaly for
topologically trivial B-field [23]. We recall once again fromSection 2that the natural
geometrical objects on the bundle(3.40) are Clifford superconnections, or equivalently
generalized Dirac operators.

Let L → Σ̃ be a given complex line bundle. We extendL over all ofΣ , if necessary
by using Swan’s theorem to choose a bundleI → Σ̃ such thatL⊕ I is trivial. Similarly,
if necessary, we choose a bundleI → Σ̃ such thatS−

L
1/2
N

⊕ I is trivial. Then bothL ⊕ I

andS−
L

1/2
N

⊕ I are extendable as vector bundles to the whole ofΣ . For the Chan–Paton

superbundleE = E+ ⊕ E− overΣ , we may then take

E± = L⊗ S±
L

1/2
N

⊕ I ⊕ I. (3.41)

To construct a tachyon field, we consider the generatorsΓi , i = 1, . . . ,2k, of the complex
Clifford algebraC+2k of the transverse structure group, which satisfy the Euclidean–Dirac
algebra

ΓiΓj + ΓjΓi = 2δij, (3.42)

and which may be decomposed as

Γi =
(

0 γ
†
i

γi 0

)
(3.43)

with respect to the chiralityZ2-grading of the spinor bundle. They are viewed as elements
of the unitary groupU(2k). The tachyon field is then the section ofE which is defined
locally by Clifford multiplication as

T (x) = 1L ⊗
(

2πf (x)

2k∑
i=1

γix
i

)
⊕ 1I⊕I (3.44)

for x ∈ Σ̃ ′, wheref (x) is a real-valued convergence factor which is constant nearΣ̃ (where
xi = 0) and which behaves asf∞/‖x‖, f∞ = const., near∂Σ̃ ′ (wherexi → ∞). We then
pick gauge connectionsA± onE± which satisfy the finite energy conditionsDT = DT† = 0
near∂Σ̃ ′. These choices are the standard assumptions used for tachyon condensation and
the bound-state construction of D-branes[1,2,9,10,54]. Note that by substituting the profile
(3.44)into(2.12)and using the Clifford relations(3.42) and (3.43), the zero-form component
of the supercurvature may be computed to be

F(0)(x) = (2πf (x))2ΓiΓjx
ixj = (2πf (x))2‖x‖21. (3.45)
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The fact that(3.45) is proportional to the identity matrix in Chan–Paton space is related
to the fact that the brane–antibrane pairs with the tachyon configuration(3.44)condense
to a single brane of co-dimension 2k. On ∂Σ̃ ′, where the tachyon field(3.44) assumes
its vacuum expectation value, the Higgs mass may thereby be determined explicitly to be
m2 = (2πf∞)2.

The resulting configuration represents the desired superconnectionA to be used in the
topological action(3.30), where we now neglect the non-abelian transverse corrections (and
hence generically ruin T-duality invariance). The gravitational couplings may be simplified
by using multiplicativity of the characteristic classes, along with the Whitney sum decom-
positionsTΣ |Σ̃ = T Σ̃ ⊕ N(Σ̃,Σ) andNΣ̃ = N(Σ̃,Σ) ⊕ NΣ . The Chern character
may be simplified by using multiplicativity, the definition(3.41), and(3.45)to compute the
superconnection field strength(2.20)with the finite energy conditions. It is then straight-
forward to arrive at

Z = −
√

2π

2

∫
Σ̃

4+σ∑
p=0

φ∗(C(2p+1−σ) ∧ e−B/2π i) ∧ ch(L) ∧
√

Â(T Σ̃)

Â(NΣ̃)

∧ ed(NΣ̃)/2
∫
Σ̃ ′

e−2πf (x)2‖x‖2
Â[N(Σ̃,Σ)] ∧ e−c1(LN )/2

∧
[
ch

(
S+
L

1/2
N

)
− ch

(
S−
L

1/2
N

)]
, (3.46)

where in this formula ch is the ordinary (ungraded) Chern character. The second integral in
(3.46)can be simplified by noting that the gauge fieldA− on the antibranes may be taken to
be trivial so that ch(S−

L
1/2
N

) = 2k−1, whileA+ may be chosen to ensure that the appropriate

degree component of the Chern character ch(S+
L

1/2
N

) is non-vanishing so as to produce a

non-zero integral over the transverse directionsΣ̃ ′. Because of the assumed properties of
the functionf (x), this integral always converges, and thereby simply produces a constant
density factor in(3.46). This leaves only the first integral of(3.46), which is the standard
Chern–Simons action for a single BPS D(p − 2k)-brane wrapping a worldvolumẽΣ and
with U(1) Chan–Paton gauge bundleL in Type II superstring theory (the density factor then
yields the appropriate tension). Thus the topological action(3.30)correctly reproduces the
charge formula for the D-branes obtained via tachyon condensation from the bound state of
higher-dimensional brane–antibrane pairs. In this context, since Clifford superconnections
can be thought of as quantizations of ordinary connections[11,13], a BPS D-brane may be
regarded as the “classical limit” of a non-BPS brane–antibrane system.

This construction can be generalized by including the non-abelian transverse scalar fields
(3.23), which are sections ofNΣ ⊗ (End(E+)⊕ End(E−)), and by replacing the complex
line bundleL in (3.41)by a bundleR of rank

M = N − ch0(I ) − ch0(I)

2k−1
, (3.47)

where ch0 is the rank function andN = N+ = N−. (This of course requires a quan-
tization condition on the ranks of the bundles in(3.41) in multiples of 2k−1.) Under the
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stated properties of the spinc-bundlesS±
L

1/2
N

above, it is possible to choose an appropriate

configuration of the scalar fieldsX such that the charge formula(3.30)coincides with the
non-abelian Chern–Simons action for a system ofM BPS D(p − 2k)-branes withU(M)

Chan–Paton gauge bundleR and including the T-duality-invariant modifications from the
adjoint sections ofNΣ̃ ⊗ EndR. This generalizes the result(3.46)to multiple branes and
realizes theM D(p − 2k)-branes as generalized instanton-like configurations via tachyon
condensation. In particular, it is possible to realize the Myers dielectric effect[26] whereby
M D(p − 2k)-branes expand into a D(p − 2k + 2r)-brane (withM units of worldvolume
instanton-like density) in terms ofN p–p̄ pairs opening up into 2k−1 (p + 2r)–(p + 2r)
pairs. Some details of this construction can be found in[56]. Alternatively, the non-abelian
dielectric couplings can be induced by adding the termsγiφ

i to the tachyon profile(3.44)
[17].

4. Ramond–Ramond couplings on unstable D-branes

In this section, we will derive the Ramond–Ramond couplings on systems of non-BPS
D-branes in Type II superstring theory. We will present two complimentary derivations of
these actions. The first one is based on the old geometric approach to Higgs fields through
dimensional reduction[57]. In its simplest setting, this technique introduces a single extra
flat, translationally invariant dimension. The tachyon field is then regarded as the component
of the gauge field along the extra direction. The main drawback of this approach is that the
superconnection gauge field should not depend on the auxiliary coordinate so that some of
the physical information is lost through the dimensional reduction that is encoded in the
modes associated to the extra dimension. This problem is cured by a second derivation of
the Chern–Simons actions through a particular reduction of the superconnection couplings
of the previous section. While this second approach is geometrically appealing because it
puts all of the non-supersymmetric configurations of D-branes in Type II superstring theory
into a common mathematical framework, it is the dimensional reduction mechanism that
plays the role in processes involving tachyon condensation.

4.1. Dimensional reduction

In this section, we will derive the result for Type IIB D-branes and extend it to the Type IIA
case via T-duality. Consider a system ofN coincident non-BPS Dp-branes, withp even. The
mathematical description of this system is much different than that of the brane–antibrane
system, mainly because the low-energy field content is drastically altered. As we will now
demonstrate, one way to think about this configuration is as the dimensional reduction of a
gauge theory in one higher dimension, rather than as a superconnection gauge theory. This
lends a somewhat different interpretation to the tachyon field instability present in these
systems.

The low-energy field content on the unstable system of branes consists of aU(N) gauge
field Aµ, and a Hermitian tachyon fieldT which transforms in the adjoint representation
N ⊗ N̄ of the Chan–Paton gauge group[28,34,58]. The fieldAµ is a connection of an
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U(N) gauge bundleE → Σ over the(p + 1)-dimensional worldvolumeΣ of theN un-
stable Dp-branes. There is also a pair of massless, 16-component fermion fieldsψ1, ψ2
which live in the adjoint representation ofU(N) (coming from the massless Yang–Mills
and tachyonic supermultiplets). They are associated with the two possible Chan–Paton
factors carried by the open strings on each brane. The crucial issue concerns the chi-
ralities of these spinor fields under the local space–time Lorentz group SO(9,1). In the
static gauge, only an SO(p,1) × SO(9 − p) subgroup of SO(9,1) is realized as a man-
ifest symmetry of the worldvolume field theory. Sincep is even, neither SO(p,1) nor
SO(9 − p) has a chiral spinor representation, and the GSO projection cannot determine
the SO(9,1) chirality of the fermion fields. Thus, both a left-handed and a right-handed
Majorana–Weyl spinor of SO(9,1) will transform in the same spinor representation of
SO(p,1) × SO(9 − p), even though the fermion zero modes from the two Chan–Paton
sectors of the open string spectrum on each D-brane have the opposite GSO projection.
Therefore, the low-energy worldvolume field theory contains a pair of fermion fields
ψ1, ψ2 each transforming in, say, the right-handed Majorana–Weyl spinor representation of
SO(9,1).

Let us now consider the dimensional extension of the worldvolumeΣ to the(p + 2)-
dimensional manifold

Σ̂ = Σ × S1, (4.1)

and coordinatize the circleS1 by y ∈ [0,1]. The pair(Aµ, T ) may then be thought of as
the dimensional reduction toΣ of anU(N) gauge fieldÂM on Σ̂ [29]

ÂM = (Aµ, T ), M = 0,1, . . . , p, y. (4.2)

The field(4.2)may be regarded as a connection of anU(N) gauge bundlêEρ → Σ̂ , where
ρ = N ⊗ N̄ is theU(N) representation carried by the fermionic open string zero modes.
Thus the tachyon fieldT on a system of non-BPS D-branes may be regarded as a gauge
connection of the external spaceS1, induced by a sort of Kaluza–Klein mechanism from
the reductionΣ × S1 → Σ . This is to be contrasted with the brane–antibrane system, in
which the tachyon field was regarded as a gauge connection of the discrete internal space
Z2, arising from a sort of Kaluza–Klein mechanism from the reductionΣ × Z2 → Σ .

The pair of spinor fieldsψ1, ψ2 may be likewise regarded as the dimensional reduction
of a 32-component Majorana fermion field on̂Σ ,

Ψ̂ =
(
ψ1

ψ2

)
. (4.3)

Therefore, the perturbative chiral gauge anomaly of the worldvolume field theory onΣ can
be obtained from that of the oxidized theory onΣ̂ by dimensional reduction. In the latter
theory, the only anomaly that can arise is due to the massless chiral fermions, and applying
the standard index theorem as before we get

index iD̂/ = (−1)(p+2)(p+3)/2
∫
Σ̂

ch+(Ê) ∧ Td(T Σ̂ ⊗ C)

χ(T Σ̂)
. (4.4)



272 R.J. Szabo / Journal of Geometry and Physics 43 (2002) 241–292

Here the superbundlêE = Ê+ ⊕ Ê− is defined byÊ± = S±(Σ̂) ⊗ Êρ , and the Dirac

operatorD̂/ defines the two-term complex

C∞(Σ̂, Ê±) D̂
/→C∞(Σ̂, Ê∓). (4.5)

The characteristic classes in(4.4)may be simplified as described inSection 3.1to yield

index iD̂/ =
∫
Σ̂

ch+
ρ (Ê) ∧ ed(NΣ̂) ∧ Â(T Σ̂)

Â(NΣ̂)
∧ χ(NΣ̂). (4.6)

The bundleÊ is trivially Z2-graded, and its Chern character may be represented by a closed
differential form onΣ̂ ,

ch+
ρ (Ê) = chρ(Ê) = Trρ exp

1

2π i
F̂
Â
, (4.7)

where

F̂
Â

= dÂ + [Â∧,Â] (4.8)

is the field strength of the gauge field(4.2).
The circleS1 is parallelizable inX, i.e. both its tangent and normal bundles are trivial

so thatχ(NS1) = Â(T S1) = Â(NS1) = 1 andd(NS1) = 0. Using the multiplicativity
(resp. additivity) of the characteristic classesÂ(V ), χ(V ) (resp.d(V )), and the decompo-
sitionsT Σ̂ = TΣ ⊕ T S1 andNΣ̂ = NΣ ⊕ NS1, we findÂ(T Σ̂) = Â(T Σ), and so on.
It is now straightforward to dimensionally reduce the index integral(4.6) to the D-brane
worldvolumeΣ . We expand the fields on̂Σ in Fourier series around theS1,

ÂM(x, y) =
∞∑

n=−∞
A

(n)
M (x)e2π iny, Ψ̂ (x, y) =

∞∑
n=−∞


ψ

(n)
1 (x)

ψ
(n)
2 (x)


 e2π iny, (4.9)

which upon integrating over theS1 part of the integral(4.6) will localize the fields onto
their zero modesA(0)

µ (x) = Aµ(x),A
(0)
y (x) = T (x) andψ(0)

a (x) = ψa(x), a = 1,2, onΣ .
In particular, the curvature two-form(4.8)upon dimensionally reducing the fields becomes

F̂
Â

= FA + DAT ∧ dy, (4.10)

whereFA is the field strength tensor of the original worldvolume gauge fieldAµ and

DAT = dT + [A, T ] (4.11)

is the gauge-covariant derivative of the tachyon field. Using(4.7) and (4.10), theS1 inte-
gration in(4.6)may be carried out explicitly to give∮

S1
ch+

ρ (Ê)=
∞∑
k=1

1

(2π i)k
1

k!

∮
S1

Trρ(FA + DAT ∧ dy)k

=
∞∑
k=1

1

(2π i)k
1

(k − 1)!
Trρ((FA)

k−1 ∧ DAT )

= 1

2π i
Trρ

(
DAT ∧ exp

1

2π i
FA

)
. (4.12)
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By using the Bianchi identityDAFA = 0, we arrive finally at

index iD̂/ = 1

2π i

∫
Σ

d Trρ

(
T exp

1

2π i
FA

)
∧ ed(NΣ) ∧ Â(T Σ)

Â(NΣ)
∧ χ(NΣ). (4.13)

As in Section 3.1, we may readily argue that the quantum anomaly arising from(4.13)
can be cancelled by anomalous magnetic RR interactions. Comparing with(3.22) and
incorporating the appropriate modifications described inSection 3.2, we arrive at the final
form of the Chern–Simons action describing the anomalous coupling of a system ofN

non-BPS D-branes to the Ramond–Ramond fieldsC,

Z̃0 = − 1

2
√

2π

∫
Σ

Tr φ∗

ei(Jφ)

2−[Jφ,T ] eJφd⊥
∣∣∣
x⊥=0

4+σ∑
p=0

C(2p+1−σ) ∧ e−B/2π i




∧DAT ∧ exp
1

2π i
FA ∧

√
Â(RT)

Â(RN)
∧ ed(NΣ)/2, (4.14)

where here Tr denotes the (symmetrized) trace in the fundamental representation of the
Chan–Paton gauge groupU(N). TheN ×N Hermitian matricesφi describe the transverse
degrees of freedom of the non-BPS branes, and the commutator term [Jφ, T ] arises from the
dimensional reduction of the pullback modification analogous to(3.24) and (3.25)involving
the gauge-covariant derivativêD

Â
. The subscript 0 in action(4.14)emphasizes the fact that

it contains only the zero modes of the tachyon and gauge fields from the dimensional
reduction, since in the calculation above we have simply eliminated theS1 dependence of
all fields before integrating over the extra dimension. A more precise evaluation should
keep all higher Kaluza–Klein modes in(4.9) before integrating over the circle. However,
in the present approach, it is difficult to keep track of these higher excitations, given that
the index theory calculation relies on the structure of the lowest lying modes. The higher
fermion modes, for example, have masses of ordern2 for thenth Kaluza–Klein state, and
the appropriate anomaly cannot be identified for these massive fields, in the present energy
regime that the calculations are based on. Furthermore, there is no immediate interpretation
of these higher states in the original worldvolume field theory. To correctly account for the
rest of the Kaluza–Klein spectrum, we will present another calculation of the anomalous
coupling of non-BPS D-branes, which utilizes the previous superconnection formalism.
This lends a more precise interpretation of the tachyon field which is based on the previous
constructions.

4.2. Reduction from brane–antibrane pairs

In this section, we will begin by working in Type IIA superstring theory. An unstable
IIA(B) Dp-brane may be realized as the projection of a IIB(A) Dp–Dp̄ system by the dis-
creteZ2 symmetry generated by the operator(−1)FL [28,33], whereFL is the left-moving
part of the space–time fermion number operator. The operator(−1)FL acts as multiplication
by −1 on all Ramond sector states in the left-moving part of the fundamental string world-
sheet, leaving all other sectors unchanged. It exchanges a D-brane with its antibrane so that
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a brane–antibrane pair is invariant under(−1)FL and it makes sense to take theZ2 quotient
of this configuration. The feature that the(−1)FL projection maps Type IIB superstring
theory into Type IIA superstring theory can be proven using boundary states[59]. The fact
that the brane–antibrane pair is mapped to a non-BPS D-brane follows from the action of
the operator(−1)FL on the Chan–Paton factorsψCP ∈ U(2N) of the open strings in the
Dp–Dp̄ system[28], which is given by

(−1)FL : ψCP �→ σ1ψCPσ1, (4.15)

where

σ1 =
(

0 1N

1N 0

)
(4.16)

generates the one-dimensional complex Clifford algebraC+∗
1 = C ⊕ Cσ1.

As we discussed earlier, the lowest lying (GSO projected) bosonic states of a system ofN

brane–antibrane pairs wrapping a common worldvolumeΣ may be geometrically encoded
in the superconnection

Â = d + Â =
(
d + Â+ T̂ †

T̂ d + Â−

)
, (4.17)

whereÂ± are theU(N) gauge fields on the branes and antibranes, respectively, andT̂

is the bi-fundamental tachyon field from the open stringp–p̄ states. The curvature of the
superconnection(4.17)is

F̂
Â

=
(
F̂+ + T̂ †T̂ D̂T̂ †

D̂T̂ F̂− + T̂ T̂ †

)
. (4.18)

Upon introducing the fields

A = 1
2(Â

+ + Â−), Ā = 1
2(Â

+ − Â−),

T = 1
2(T̂ + T̂ †), T̄ = 1

2(T̂ − T̂ †), (4.19)

it follows that the only ones which survive the(−1)FL projection areA andT , i.e. the
quotient of the spectrum of thep–p̄ pairs setsĀ = T̄ = 0. Clearly, the fermionic spectrum
of the quotiented theory contains two Majorana–Weyl spinors of the same chirality, as
the projection identifies the field contents on the branes and antibranes. In this way, we
recover the low-energy spectrum of fields on the worldvolumeΣ of a system ofN non-BPS
Dp-branes.

We may therefore compute the anomalous coupling of the unstable D-branes by taking
the quotient of the anomaly term(3.14)for the brane–antibrane system. Evidently, the only
change is the reduction of the Chern character, which withĀ = T̄ = 0 in (4.18)becomes

[ch+(Ê)](−1)FL = Tr(−1)F exp
1

2π i

(
FA + T 2 DAT

DAT FA + T 2

)
, (4.20)
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whereÊ = Ê+⊕Ê− is the Chan–Paton superbundle over the brane–antibrane worldvolume
Σ , which reduces to a triviallyZ2-gradedU(N) gauge bundleE → Σ with corresponding
worldvolume fields in(4.20) upon modding out by the operator(−1)FL using its action
(4.15)on the Chan–Paton factors. ThisZ2-action induces an isomorphism̂E+ ∼= Ê− ≡ E

and thereby identifiesE as the diagonal sub-bundle of [Ê](−1)FL
∼= E ⊕ E. Using the

supersymmetric structure of(2.19) and (4.20)with N+ = N− = N , we may diagonalize
the real, symmetric reduced superconnection field strength [F̂

Â
](−1)FL to obtain

[ch+(Ê)](−1)FL = Tr

[
exp

1

2π i
(FA + T 2 + DAT ) − exp

1

2π i
(FA + T 2 − DAT )

]
.

(4.21)

Note that an elegant reduction such as(4.21) is not possible for the Chern character of
a brane–antibrane system itself, whereby the superconnection curvature is generically a
complex, Hermitian matrix with respect to theZ2-grading.

The reduced Chern character(4.21)can be expanded into a more explicit expression by
using the Dynkin form of the Baker–Campbell–Hausdorff formula[60]. This enables us to
write

exp
1

2π i
(FA + T 2 + DAT )

= exp


 1

2π i
(T 2 + DAT ) +

∞∑
r,s=1

Ξrs[A, T ]


 ∧ exp

1

2π i
FA, (4.22)

where

Ξrs[A, T ] = (−1)s

(r + s)(2π i)r+s

∑
m≥1

(−1)m

m

×
∑

p1+q1≥1,...,pm+qm≥1
p1+···+pm=r, q1+···+qm=s

1

p1!q1! · · ·pm!qm!
[(FA + T 2 + DAT )p1∧, [(FA)

q1

× ∧, [· · · [(FA + T 2 + DAT )pm∧,(FA)
qm ]]] · · · ]. (4.23)

The leading terms in the expansion of the right-hand side of(4.22)are given by

Ξ2[A, T ] = − 1

2(2π i)2
[FA

∧,FA + T 2 + DAT ],

Ξ3[A, T ] = 1

12(2π i)3
([[FA + T 2 + DAT

∧,FA]∧,FA]

+ [[FA + T 2 + DAT
∧,FA]∧,FA + T 2 + DAT ]),

Ξ4[A, T ] = − 1

48(2π i)4
([FA

∧, [FA + T 2 + DAT
∧, [FA + T 2 + DAT

∧,FA]]]

+ [FA + T 2 + DAT
∧, [FA

∧, [FA + T 2 + DAT
∧,FA]]] ), (4.24)
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whereΞn[A, T ] = ∑
r+s=n Ξrs[A, T ]. Substituting(4.22) into (4.21), we arrive, in the

usual way, at the complete RR coupling

Z̃ = −
√

2π

2

∫
Σ

Tr φ∗

ei(Jφ)

2−[Jφ,T ] eJφd⊥
∣∣∣
x⊥=0

4+σ∑
p=0

C(2p+1−σ) ∧ e−B/2π i




∧

exp


 1

2π i
(T 2 + DAT ) +

∞∑
r,s=1

Ξrs[A, T ]




− exp


 1

2π i
(T 2 − DAT ) +

∞∑
r,s=1

Ξrs[A,−T ]






∧ exp
1

2π i
FA ∧

√
Â(RT)

Â(RN)
∧ ed(NΣ)/2, (4.25)

whereφi = 1
2(φ̂

i+ + φ̂i−) and now the transverse tachyon coupling [Jφ, T ] comes from the
(−1)FL projection of the operator(3.28). Action (4.25) is an odd function of the tachyon
field T . Specifically, it contains only even powers ofT and odd powers ofDAT . The
expansion of(4.25)is similar in form to that constructed in[31], except that it generically
contains extra powers of the field strengthFA coupled to the tachyon terms. To linear order
in the tachyon field, action(4.25)coincides with the zero mode action(4.14)and hence the
non-BPS D-brane coupling proposed in[30]. The complete series(4.25)thereby represents
the contributions from all Kaluza–Klein sectors of the oxidized theory described in the
previous section.

4.3. Tachyon condensation

Using action(3.33), it is possible to write down a natural geometric action for the system
of unstable D-branes using the(−1)FL projection. It is given by

Z̃kin = 1

2

∫
Σ

[‖F̂
Â

− Ĝ‖2](−1)FL

=
∫
Σ

d vol(Σ)Tr[(FA)
2 + (DAT )2 + (T 2 − G)2 + · · · ], (4.26)

whereG = 1
2(Ĝ

+ + Ĝ−). The resulting tachyon potential in(4.26) has the anticipated
Z2 reflection symmetry under the transformationT �→ −T [10]. Again action(4.26) is
minimized by flat gauge connections and covariantly constant tachyon fields. IfG = m21

with m2 > 0, then the tachyon condensates obey the equationT 2
c = m21 and theU(N)

gauge symmetry of the system is broken down to the subgroupU(nc)×U(N −nc), where
nc is the number of negative eigenvalues ofTc. Again this action is determined by a spectral

Lagrangian of the form Tr[σ ◦ c−1(D̂/
2
)]2

(−1)FL
involving the pertinent generalized Dirac

operator. Thus for non-BPS D-branes, the same geometrical ingredients naturally lead to
the standard processes involving tachyon condensation.



R.J. Szabo / Journal of Geometry and Physics 43 (2002) 241–292 277

In the absence of a tachyon field the RR couplings(4.25)vanish, as expected since then the
unstable D-brane configuration simply decays into the supersymmetric vacuum state. How-
ever, a topologically non-trivial tachyonic configuration can produce a lower-dimensional
D-brane within the configuration of non-BPS branes. To demonstrate this, the crucial ob-
servation is that for processes involving tachyon condensation it is sufficient to focus on
the zero mode part(4.14)of the total Chern–Simons action[31]. For a Higgs profile of the
tachyon field, the terms in(4.25) involving higher powers ofT or DAT will vanish. By
dropping the non-abelian couplings to the transverse scalar fields, action(4.25)coincides
with that of[30]. It is now straightforward to repeat the brane construction ofSection 3.3in
the present case and induce the Chern–Simons term for a BPS D-brane wrapping a world-
volumeΣ̃ of co-dimension 2k + 1 in Σ . For a Higgs-like configuration, action(4.25)can
be reduced to the form

Z̃0 = − 1

2
√

2π

∫
Σ̃

4+σ∑
p=0

φ∗(C(2p+1−σ) ∧ e−B/2π i) ∧ ch(L) ∧
√

Â(T Σ̃)

Â(NΣ̃)

∧ ed(NΣ̃)/2
∫
Σ̃ ′

d Tr

(
T exp

1

2π i
FA

)
∧ Â[N(Σ̃,Σ)] ∧ e−c1(LN )/2, (4.27)

where we have used the Bianchi identity. HereA is a connection on the twisted real spinor
bundleS

L
1/2
N

overΣ̃ , while for the tachyon field configuration we have again taken Clifford

multiplication

T (x) = 1L ⊗
(
f (x)

2k+1∑
i=1

Γix
i

)
⊕ 1I (4.28)

with Γi the generators of the Clifford algebra of the transverse structure group SO(2k+ 1).
From (4.27), it is evident that an appropriate choice of gauge connectionA leads to the
correct Ramond–Ramond coupling of a supersymmetric D(p− 2k− 1)-brane, similarly to
[30]. Since the characteristic classes are closed forms, the second integral in(4.27)can be
reduced to the form

∮
∂Σ̃ ′ Tr(T eFA/2π i)∧ Â∧ e−c1/2. Since the tachyon fieldT is constant

on∂Σ̃ ′, we can chooseA so that its field strengthFA has the appropriate generalized vortex
configuration to yield a non-vanishing boundary integration.

5. Other non-supersymmetric brane systems

In this section, we will briefly explain how to obtain the anomalous couplings to all
non-BPS systems of branes in Type II superstring theory. We shall do so by giving a set of
rules for the transformations of the RR potentials in our previously derived Chern–Simons
actions.

5.1. NS-branes

An important ingredient missing from our analysis of the Type IIB theory is its S-duality
symmetry. This duality is also manifest at the level ofp-brane solutions of 10-dimensional
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supergravity. The Chern–Simons actions for unstable configurations of NS-branes in Type
IIB superstring theory can be read off from the couplings(3.30) and (4.25)by applying the
SL(2,Z) S-duality transformation rules[61] to the total RR potentialC = ∑

p φ∗C(p), the
B-field, and the field strengthsF± of the open fundamental strings ending on the D-branes.
In the string frame, these transformations are given by

C(0) �→ − C(0)

(C(0))2 + e−2ϕ
, C(2) �→ B, C(4) �→ C(4), C(6) �→ B(6),

C(8) �→ −C̃(8), B �→ −C(2), F± �→ F̃±. (5.1)

Hereϕ is the dilaton field,C(0) the axion field,B(6) the electromagnetic dual of the NS–NS
two-formB andF̃± are the fluxes of the D1-branes that end on the NS-branes, which com-
bine geometrically with the induced openp–p̄ D-string tachyon field̃T into the appropriate
superconnection on the NS-brane worldvolumeΣ̃ . Note that the four-form RR potential
is unaffected because of the self-duality of the D3-brane, while the transformation of the
eight-form potential reflects the fact that D7-branes and NS7-branes do not form a doublet
under S-duality[62]. The eight-formC̃(8) is related to the NS–NS and RR eight-forms by

dC̃(8) = −C(0) dB(8) + [(C(0))
2 + e−2ϕ ] dC(8). (5.2)

The fields(C(8), C̃(8), B(8)) thereby form a triplet under SL(2,Z) transformations, where
in addition to the transformation rule in(5.1)we have

C̃(8) �→ −C(8), B(8) �→ −B(8). (5.3)

Via T-duality, we also recover in this way the corresponding Chern–Simons actions for Type
IIA NS-branes. The bound-state constructions of BPS NS-branes from unstable ones now
also follow as outlined inSections 3.3 and 4.3. Some details can be found in[56,63,64].

5.2. M-branes

The constructions of previous sections yield the anomalous couplings of all branes in Type
II superstring theory, with the exception of the gravitational wave and the Kaluza–Klein
monopole which are only defined in space–times that contain a special isometric direction.
In the case of the pp-wave, this isometry lies in the direction of propagation of the wave,
while for the KK-monopole it corresponds to the Taub-NUT fibre of its normal bundle.
By oxidizing Type IIA superstring theory to M-Theory, these solitonic branes can be most
naturally seen to arise from reductions of the corresponding M-branes in 11 dimensions.
Nine-branes and ten-branes in M-Theory should, however, be dealt with in the context of
massive 11-dimensional supergravity[65], since the BPS M9-brane couples magnetically
to the mass field. While a fully covariant massive supergravity theory cannot be constructed
in 11 dimensions[66], a supergravity action that is gauged with respect to an isometric 11th
direction of space–time can be written down which reduces dimensionally to massive Type
IIA Romans supergravity[67]. Reduction of the single M9-brane in this way along its gauged
direction yields a D8-brane domain wall, while reduction along the transverse direction gives
an NS9-brane. Reduction in another direction produces a KK8-brane monopole[62] with
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a gauged direction in its worldvolume that is inherited from the M9-brane. In turn, these
latter branes are most naturally understood as the electromagnetic duals of the mass field
in massive Type IIA supergravity. Similarly, reduction of an M0-brane along the direction
of its Killing vector yields a D0-brane, while its reduction in a non-isometric direction
produces a gravitational wave.

The rules for uplifting the unstable Type IIA Chern–Simons actions(3.30) and (4.25)
along the direction of a Killing vector field̂k to M-Theory actions describing the couplings
of unstable M-branes are given by[56,68]

C(1) �→ k̂(1)

‖k̂‖2
, C(3) �→ (Ĉ(3))µ̂ν̂λ̂∇ k̂X̂ µ̂ ∧ ∇ k̂X̂ ν̂ ∧ ∇ k̂X̂ λ̂,

C(5) �→ J
k̂
Ĉ(6) + Ĉ(3) ∧ J

k̂
Ĉ(3), C(7) �→ J

k̂
N̂(8), C(9) �→ J

k̂
B̂(10),

B �→ J
k̂
Ĉ(3), F± �→ F̂±. (5.4)

Thep-form fields on the right-hand side of(5.4)are assumed to be invariant under the isom-
etry of space–time,L

k̂
Ĉ = 0 whereL

k̂
is the Lie derivative along the Killing vector field̂k,

and the hats refer to 11-dimensional quantities. The one-formk̂(1) is the Poincaré–Hodge
dual to the Killing vector field, whilêC(3) (resp.Ĉ(6)) is the usual three-form (resp. six-form)
field of 11-dimensional supergravity. The matrix fieldsX̂ µ̂ are the non-abelian M-brane em-

bedding coordinates in 11 dimensions, while∇ k̂ is the usual non-abelian M-brane covariant
derivative defined by

∇ k̂X̂ µ̂ = D̂X̂ µ̂ − k̂ν̂ D̂X̂
ν̂

‖k̂‖2
k̂µ̂, (5.5)

whereD̂ is the 11-dimensional gauge-covariant derivative defined analogously to(2.16).
The eight-form fieldN̂(8) is the Hodge dual of the Killing one-form̂k(1), while B̂(10) is
the electromagnetic dual of the mass field. The gauge field curvaturesF̂± are the fluxes
of the M2-branes wrapped around the direction ofk̂, which induce ap–p̄ tachyon field
T̂ in the M-brane worldvolumêΣ that combine into the appropriate superconnection. The
KK-monopole and pp-wave couplings can now be obtained by oxidizing the appropriate
Type IIA actions using the transformation rules(5.4), and then dimensionally reducing them
in a worldvolume direction. The corresponding transformations of all objects appearing in
the Chern–Simons actions(3.30) and (4.25)can be worked out in the same way as the other
dimensional reductions discussed in this paper. Further details can be found in[56,63,69],
where the corresponding bound-state constructions are also given. In fact, all Type II branes
can be obtained via the totality of reductions and tachyon condensations on the oxidized
M-brane couplings described in this section[56,63].

6. K-theory analysis

Let Σ be a compact spinc-brane–antibrane worldvolume manifold in Type II super-
string theory, and letE = E+ ⊕ E− be the corresponding Chan–Paton superbundle over
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Σ . Under the usual physical assumptions of brane–antibrane creation and annihilation
[1,2,9,10,54], the details of which have been substantially verified via boundary string field
theory calculations[4], the Chan–Paton bundles on the branes and antibranes should be sub-
jected to the equivalence relation(E+, E−) ∼ (E+ ⊕ H,E− ⊕ H) for all gauge bundles
H , and hence the net D-brane charge of this configuration depends only on its K-theory
class [(E+, E−)] = [E+] − [E−] ∈ K0(Σ). By using the Thom isomorphism and the
Atiyah–Bott–Shapiro construction[9,10], it is possible to map this class to an element of
the K-theory group K0(X) of space–time. This utilizes the construction that was presented
in Section 3.3which derived D-brane charge from a higher-dimensional brane–antibrane
system. In this section, we will show how this fact ties in very naturally with the supercon-
nection formalism developed in this paper in terms of Dirac operators and index theory.
This identification is supported by the analysis of the previous section, which shows that
all branes are universally classified by the appropriate K-theory groups[64,69].

An interpretation of the anomalous coupling in(3.1) and (3.2)for supersymmetric systems
of D-branes, which also takes into account the subtleties associated with the self-duality of
the RR fields[24], has been given in terms of K-theory in[25]. One can define a K-theory
groupK̂p+1(X) of p-form fields, analogously to the framework of Deligne cohomology,
via the exact sequence

0 → Kp(X,R)

Kp(X)
→ K̂p+1(X) → Bp+1(X) → 0, (6.1)

where Kp(X,R) = Kp(X) ⊗ R and

Bp+1(X) = {(x, ω) ∈ Kp+1(X) × Hp+1(X,Z)|ch(x) = [ω]DR} (6.2)

with [ω]DR ∈ Hp+1(X,R) the de Rham representative of the integer cohomology classω.
For a system of BPS Dp-branes, we then have eiZ ∈ K̂p+1(X), where the type of K-theory
(complex, real or quaternionic) depends on the value ofp mod 8[25]. However, in what
follows we shall see that the analysis of the present paper is more naturally connected to
K-homology, showing that K-homology is really the appropriate setting for the topological
classification of D-brane charge. This has been pointed out previously in different contexts,
and from very different points of view, in[10,36,37]. We shall only deal with the construction
of K-theory classes over the worldvolumeΣ , as then the mapping to the K-theory of
space–time can be carried through by using standard techniques.

6.1. Index bundles and Chern–Simons couplings

In this section, we shall work in Type IIB superstring theory so that dimΣ = p + 1 is
even. Consider the Clifford bundleC+(Σ) overΣ , and letD/ be the corresponding Dirac
operator. By using Swan’s theorem, we can represent the Chan–Paton superbundle overΣ

as the rangeE = ΠON(Σ) of a projectionΠ : ON(Σ) → ON(Σ), Π2 = Π = Π†, of
the trivial vector bundleON(Σ) → Σ of rankN = (p + 1)ch0(E). The corresponding
twisted Dirac operatorD/ E onC+(Σ) with coefficients inE may thereby be expressed as

D/ E = Π(D/ ⊗ 1)Π. (6.3)
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With H = C∞(Σ, SE) = H+ ⊕H− the graded Hilbert space of smoothE-valued spinor
fields onΣ , the Dirac operator is a mapD/ E : H± → H∓ and so it can be decomposed
with respect to theZ2-grading as

D/ E =
(

0 D/
−
E

D/
+
E 0

)
. (6.4)

If ∇ is an ordinary connection onE, then the quantity

E = (−1)F ⊗ ∇ + D/ E =
( ∇ D/

−
E

D/
+
E −∇

)
(6.5)

defines a superconnection of the twisted spinor bundleSE = S+
E ⊕S−

E . The Chern character
of SE is then given by[11]

ch+(SE) = ch+(H,D/ E) = Tr exp
1

2π i
FE, (6.6)

where in the first equality we have emphasized the fact that ch+ depends only on the choice
of Dirac operatorD/ E acting on a particular graded Hilbert spaceH. Formula(6.6)follows
from the one-to-one correspondence between generalized Dirac operators and supercon-
nections that we mentioned inSection 2.3, and the Lichnerowicz formula(3.37). Moreover,
the cohomology class of(6.6)does not depend on the off-diagonal odd parts of the super-
connection(6.5), and so it determines an element ch(E+) − ch(E−) ∈ H even(Σ,Q). In
other words, the Chern character depends only on the choice of virtual bundle [(E+, E−)] ∈
K0(Σ). Going back to the superconnectionA introduced inSection 2.1, this simply means
that the induced D-brane charge is independent of the choice of profile for the tachyon field
T . This is precisely what was found inSection 3.3via explicit calculation.

The key feature here is that the anomalous coupling on the brane–antibrane worldvol-
ume is determined entirely by the choice of Dirac operator, or more precisely by the pair
(H,D/ E). As we will now discuss, this immediately leads to the relationship to K-theory, or
more precisely to K-homology. The family of finite-dimensional subspaces ker iD/

±
E ⊂ H∓

defines a virtual bundle overΣ known as the index bundle[10,70,71]

Ind(H,D/ E) = [ker iD/ +
E ] − [ker iD/ −

E ] ∈ K0(Σ). (6.7)

The closed differential form(6.6) is then also a representative of the Chern character
ch+(Ind(H,D/ E)) ∈ H even(Σ,Q) of the index bundle. By using this property and the
generic, untwisted Dirac operatorD/ , we may define a natural pairing on K-theory known
as the index map

IndexD/ : K0(Σ) → Z, (6.8)

which is given by

IndexD/ ([E]) = index iD/ E=ch0(Ind(H,D/ E)) = dim ker iD/ +
E−dim ker iD/ −

E. (6.9)

Therefore, the anomaly arising from the Dirac spinor fields onΣ leads naturally to a pairing
on K-theory. This pairing in turn defines K-homology, as we will discuss in the next section.
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Before doing this, let us first show precisely how the index bundle is related to the gen-
eralized Chern–Simons forms which are used to generate the Ramond–Ramond couplings,
and hence the appropriate pairing on K-theory. We write the generalized Dirac operator
D/ E = Q(∇s ⊗ 1 + 1 ⊗A) ≡ ∇/ s +A/ as inSection 2.3, and introduce a linear homotopy
of superconnections. For fixedt ∈ [0,1], we consider the superconnection

E(t) = δBRST + ∇/ s + t (Λ +A/ ), (6.10)

whereΛ is the Cartan–Maurer form(2.47). Its curvature is

E(t)2 = (t2 − t)(Λ2 + [Λ,A/ ]) + (∇/ s + tA/ )2, (6.11)

which, att = 0,1, obeys the horizontality condition[11]

E(0)2 = Q ◦ ω(R∇), E(1)2 = FE. (6.12)

The superconnection(6.10)thereby defines a continuous interpolation between the index
bundle and the Clifford bundle overΣ .

The Chern character(6.6) may then be used to construct generalized Chern–Simons
forms via the generating function

ξ(H,D/ ) =
∫ 1

0
dt Tr+(Λ +A/ )exp

1

2π i
E(t)2. (6.13)

The relevant part of(6.13)insofar as the chiral gauge anomaly is concerned is the degree 1
component in the BRST ghost fieldΛ. To find it, we use the Duhamel expansion

eA+B = eA +
∑
n≥1

∫
∆n

dt0 et0A
n∏

a=1

dta B etaA, (6.14)

where

∆n =
{
(t0, t1, . . . , tn) ∈ Rn+1|ta ≥ 0,

∑
a

ta = 1

}
(6.15)

is the standardn-simplex inRn+1. We setA = (1/2π i)(∇/ s + tA/ )2 andB = ((t2 − t)/

2π i)(ω2 + [ω,A/ ]) in (6.14). By using(6.11), we then find that the term in(6.13)which is
linear in the BRST ghost field comes solely from the leading andn = 1 terms in expansion
(6.14). In this way, we arrive at the total Chern–Simons form

ξ (1)(H,D/ )=
∫ 1

0
dt Tr+

[
Λexp

1

2π i
(∇/ s + tA/ )2 + t2 − t

2π i
A/
∫ 1

0
dt ′

(
exp

t ′

2π i
(∇/ s + tA/ )2

)
[Λ,A/ ]

(
exp

t ′ − 1

2π i
(∇/ s + tA/ )2

)]
. (6.16)

Note that whenA = R∇ = 0, (6.16)coincides with the Cartan form Tr+Λ. In the general
case, the formξ (1)(H,D/ ) is a deformation of the Cartan co-cycle which has the same group
cohomology class. While this provides a nice characterization of the topological anomaly,
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the important aspect is that the inhomogeneous form(6.13), which essentially determines the
formY to which the Ramond–Ramond potentials couple, involves a continuous deformation
to the index bundle generated by the Dirac operatorD/ , and is thereby naturally related to
K-homology, as we now explain.

6.2. Fredholm modules and bivariant K-theory

To place the discussion of the previous section into a precise K-theoretical framework,
we shall use the dual, algebraic characterization of the geometry of the brane–antibrane
worldvolumeΣ in terms of the algebraA = C∞(Σ) of smooth complex-valued functions
on Σ . We representA on the Hilbert spaceH diagonally by pointwise multiplication of
functions. The K-theory group K0(Σ) may be defined as the space of equivalence classes
of projectionsΠ acting onH. Two projectionsΠ andΠ ′ are said to be (algebraically)
equivalent if there is a partial isometryU onH with Π = U†U andΠ ′ = UU†. The
K-homology group K0(Σ) is now defined in terms of Fredholm operatorsF acting on the
Hilbert spaceH, i.e. those operators for which there exists another operatorQ such that
FQ − 1, QF − 1 and [F, f ]+ ∀f ∈ A are all elements of the elementary algebraK(H)

of compact operators onH. We further assume that the operatorF is odd with respect
to theZ2-grading onH, i.e. εF = −Fε. The pair(H,F) is called an even K-cycle and
the quadruple(A,H,F, ε) is known as an even Fredholm module[71]. The abelian group
K0(Σ) may be represented in terms of homotopy classes of K-cycles with respect to direct
sum. The natural pairing between K-theory and K-homology is then provided by the index
map which generalizes(6.3), (6.8) and (6.9),

K0(Σ) × K0(Σ) → Z,

([Π ], [F ]) �→ indexΠFΠ.
(6.17)

Note that any pair(H,D/ ) determines a Fredholm module[72]. While the Dirac operator
D/ is unbounded, the commutators [D/ , f ]+ are bounded andf (1+D/

−
D/

+
)−1 ∈ K(H) for

all f ∈ A. Then

F = D/
+√

1 + D/
−
D/

+ = D/
+
∫ ∞

0

ds√
s

1

s + 1 + D/
−
D/

+ (6.18)

is a Fredholm operator. Conversely, any Fredholm module can be obtained in this way (up
to homotopy). The pair(H,D/ ) is therefore usually referred to as a Dirac K-cycle and it is
the underlying analytical object which generates K-homology.

The natural pairing between K-theory and K-homology is actually best understood
through a bivariant form of K-theory known as KK-theory[73]. The concept of Fredholm
module naturally extends to that of a Kasparov module which is a quintuple(A,B,H,F, ε)
whereA andB are algebras. The generalization which occurs is that whileA is still repre-
sented onH by bounded operators,H is now a (right) Hilbert module overB, i.e. a right
B-module which admits an inner product with values inB and which is complete with
respect to this inner product. The remaining properties are as in the case of Fredholm mod-
ules. The abelian group of homotopy classes of Kasparov modules with respect to direct
sum defines the KK-group KK0(A,B). The functorA �→ KK 0(A,B) is covariant while
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B �→ KK 0(A,B) is contravariant. In particular, whenB = C the group KK0(A,C) is by
definition just the abelian group of homotopy classes of Fredholm modules over the algebra
A. Specializing to the caseA = C∞(Σ), we thereby have

KK 0(C
∞(Σ),C) = K0(Σ). (6.19)

On the other hand, withA = C the group KK0(C,B) is the abelian group of equivalence
classes of (right) projectiveB-modules, and again specializing toB = C∞(Σ) we have by
the Serre–Swan theorem that

KK 0(C, C∞(Σ)) = K0(Σ). (6.20)

Therefore, we see that the Dirac K-cycle(H,D/ ) interpolates between the K-homology
[(H,D/ )] ∈ KK 0(C

∞(Σ),C) and K-theory Ind(H,D/ E) ∈ KK 0(C, C∞(Σ)) groups.
The real advantage of the KK-theory description is that there is typically a line bundle

Π which is a projection onMN(C∞(Σ) ⊗ Ā), withMN the algebra ofN × N matrices
with entries in the given algebra such that the index bundle of K-theory can be represented
as[71,73]

Ind(H,D/ ) = [Π ] ⊗Ā (H,D/ ) ∈ KK 0(C, C∞(Σ)) (6.21)

in terms of the Kasparov product⊗Ā of Π by the K-homology cycle(H,D/ ). The Kasparov
product here is a map

⊗Ā : KK 0(C, C∞(Σ) ⊗ Ā) × KK 0(Ā,C) → KK 0(C, C∞(Σ)), (6.22)

whereĀ is theL∞-norm closure of the algebraA = C∞(Σ) in theC∗-algebra of bounded
linear operators on the separable Hilbert spaceH. The result(6.21)emphasizes the fact
that K-homology, through the Dirac K-cycle(H,D/ ), is the defining topological property
of D-brane charge.

The Kasparov product is most elegantly described by introducing the notion of a Cuntz
algebra as follows[74]. SinceΣ is assumed to be compact,A = C∞(Σ) is a unital algebra.
The Cuntz algebraQA is defined to be the free productQA = A ⊗ A in the category of
unital algebras, i.e. with amalgamation over the identity1A of A. ThenQA is naturally
a super-algebra, and there is a canonical “folding” homomorphismϕ : QA → A which
identifies the two copies of the algebraA insideQA. Let qA = kerϕ. Given a Kasparov
module(A,B,H,F, ε) we can induce a homomorphismα : qA → K(H) by

α(η) = PGSOη, α∨(η) = PGSOFηF, (6.23)

where, for anyf ∈ A, f �→ f ⊗ 1A andf ∨ �→ 1A ⊗ f are the two canonical monomor-
phismsA ↪→ QA. To characterize the relationship between Cuntz algebras and KK-theory,
we denote by [qA,K(H) ⊗ B] the semi-group of homotopy classes of algebra homomor-
phismsα : qA → K(H)⊗B with respect to the direct sumα⊕α′ : qA →M2(K(H)⊗B) ∼=
K(H) ⊗ B, where the isomorphism is a consequence of Morita equivalence. Then, for any
two algebrasA andB, one can show that[74]

KK 0(A,B) = [qA,K(H) ⊗ B]. (6.24)

The result(6.24)may now be used to define the Kasparov product KK0(A,B)×KK 0(B,C) →
KK 0(A,C) for any three algebrasA, B andC.
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If ζ is the canonical generator of K0(qC) ∼= K0(C) ∼= Z, then to any element [α] ∈
[qC,K(H) ⊗ A] we can assign the K-theory class

K0(α)[ζ ] ∈ K0(K(H) ◦ ⊗A) ∼= K0(A), (6.25)

where we have used the stability of K-theory under Morita equivalence. WithA = C and
B = C∞(Σ) we then arrive at the isomorphism

[qC,K(H) ⊗ C∞(Σ)] ∼= K0(Σ), (6.26)

showing how the Cuntz algebra description(6.24)naturally achieves the desired K-theory
and K-homology interpolation. The naturalZ2-grading on the Cuntz algebraQA or onqA
fits in nicely with the fact thatΣ is the worldvolume of a brane–antibrane pair, and this
natural association gives rise to the K-homology group K0(Σ). The crucial feature here
though is that the operator(6.5) is a Quillen superconnection and so the corresponding
index theorem characterizes the cohomology class of the topological anomaly, represented
most naturally through the Dirac K-cycle(H,D/ ).

The Ramond–Ramond fieldsG = dC also define elements of K-theory through the

modified Bianchi identity dG = 2π ch+(x) ∧
√
Â(TX) which leads to the field

G(x) = 2π ch+(x) ∧
√
Â(TX) (6.27)

that depends only on the virtual bundlex = [(E+, E−)] [24,25]. The anomalous couplings∫
Σ
C ∧ Y represent a pairing between K-theory and K-homology, or equivalently a natural

pairing on bivariant KK-theory. Alternatively, we may view it as a pairing between de
Rham cohomology and K-homology through the homological Chern character. By using
the push-forwardφ∗ induced on homology by the embeddingΣ↪→φX, we may lift all of
these statements to find that D-brane charge in Type IIB superstring theory is labelled by the
K-homology group K0(X) = KK 0(C

∞(X),C) of the space–time manifoldX. However,
this interpretation does not explain why the geometrical Dirac genus term appears with a
square root in the pairing, as in(3.22)or (6.27), and the appearance of this factor is one of
the fundamental aspects of the K-theoretic (or otherwise) formulation of D-brane charges
and Ramond–Ramond fields for which a heuristic interpretation is still lacking.

Analogous conclusions for Type IIA D-branes, for which dimΣ = p + 1 is odd, can
be reached by removing the gradingε into positive and negative chirality spinor fields
from the definitions of Fredholm and Kasparov modules above. The corresponding equiv-
alence classes of odd modules define the higher K-homology and KK-groups K1(Σ) and
KK 1(A,B), respectively. Again by using push-forward mapsφ∗ we may infer that D-brane
charge in Type IIA superstring theory takes values in the K-homology group K1(X) =
KK 1(C

∞(X),C) of space–time. Note that the distinction between Type IIA and Type IIB
K-groups is far more natural in K-homology than it is in the K-theory of virtual bundles,
because it relies solely on the dimensionality of the D-brane worldvolume to determine
a chirality grading on the corresponding space of spinor fields. It would be interesting
to find an interpretation of the intermediary bivariant K-theory groups KK0(A,B) which
interpolate between the K-homology and K-theory groups.
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6.3. Toeplitz operators and unstable D-branes

Unstable Dp-branes in Type II superstring theory have been interpreted as stringy ana-
logues of sphalerons[75], i.e. static classical solutions with a single negative fluctuation
mode. They are thereby related to the non-trivial homotopy of string configuration space, and
also intimately to K-theory. A BPS D(p−1)-brane, whose charge is classified by K-theory,
gives rise to a one-parameter family of static configurations whose topology is the same
as that of the stable D(p − 1)-brane. The extra parameter lives in a manifoldM which
replaces the Euclidean time and parametrizes the D-sphalerons. The unstable Dp-branes
thereby produce a family of virtual bundles [(E+(t), E−(t))] = x(t) ∈ K0(X), t ∈M so
that the homotopy of string configuration space on the space–time manifoldX is related to
the K-theory group K0(X ×M). The connection to K-theory using superconnections and
index theory, or equivalently Dirac operators, in this case is most naturally done using the
dimensional reduction method ofSection 4.1. This interpretation is very much in the same
spirit as the sphaleron picture of unstable branes and it yields an analytical description of
the RR couplings that were derived inSection 4.

We work now in Type IIA superstring theory and consider the oxidation(4.1) of the
even-dimensional worldvolumeΣ of the unstable D-branes. With the Hilbert spaceHS1 =
L2(S1,dy), the Dirac K-cycle of the circleS1 parametrized byy ∈ [0,1] is (HS1,d/dy).
Its Chern character in homology is the fundamental class [S1] ∈ H1(S1,Z). We are thereby
led to consider the K-homology cycle of̂Σ which is the graded tensor product(H′,D/ ′

) =
(H,D/ ) ⊗ (HS1,d/dy), whereH′ = H ⊗ HS1 and the Dirac operator of this product is
given by

D/
′ = (−1)F ⊗ d

dy
+ D/ ⊗ 1 =




d

dy
D/

−

D/
+ − d

dy


 . (6.28)

The pair(H′,D/ ′
) thus defines an odd K-cycle, i.e. it determines an element of K1(Σ̂), and

decomposing this group using the Künneth theorem and Poincaré duality gives

K1(Σ × S1) = K1(Σ) ⊕ K0(Σ), (6.29)

thereby determining an element of K1(Σ) via projection onto the first summand of(6.29).
The details of this projection are equivalent to the elimination of all higher winding modes
of the fields that was done in the derivation ofSection 4.1. This follows from the fact that
the canonical projection mapπ : Σ̂ → Σ induces an epimorphismπ∗ : K1(Σ̂) → K1(Σ)

with kerπ∗ = K0(Σ) so that the group K0(Σ) accounts for the winding modes around the
circle S1 of Σ̂ .

We can now understand the role of these winding modes more precisely as follows. The
components of the Chern character of(H′,D/ ′

) are given by[76]

ch+
n (H

′,D/ ′
)[f0, f1, . . . , fn] = λn

∫
Σ̂

Â(T Σ̂) ∧ Tr(f0 df1 ∧ · · · ∧ dfn), (6.30)

whereλn are some universal coefficients andfa ∈ MN(C∞(Σ × S1)). The topologi-
cal anomalyξΛ corresponding to the Cartan–Maurer formΛ = g−1δBRSTg will then be
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determined, as described inSections 2.4 and 6.1, by a sum over the Chern characters(6.30)of
odd degreen = 2m+1 obtained by settingf0 = g−1, f1 = g, . . . , f2m = g−1, f2m+1 = g.
SinceÂ(T Σ̂) = Â(T Σ), this leads to the following expression[51]:

ξΛ =
∑
m≥0

(−1)mm!λ2m+1

∫
Σ

Â(TΣ)

∮
S1

Tr(g−1 dg ∧ dg−1 ∧ · · · ∧ dg). (6.31)

The integral over the extra dimensionS1 in (6.31)is most elegantly understood through the
formalism of Toeplitz operators, as we now describe.

Let us consider first the case of a single unstable D-brane, i.e.N = 1. The Hilbert space
HS1 is a module over the algebraAS1 = C∞(S1), with the action ofAS1 onHS1 given by
pointwise multiplication of functions. The Hardy spaceH+

S1 is defined to be theL2-norm

closure inHS1 of the linear span of the set of functions{e2π iny}n≥0, i.e.

H+
S1 = ∞⊕

n=0
C e2π iny. (6.32)

Let P+ : HS1 → H+
S1 be the corresponding orthogonal projection. For any functionf ∈

AS1, we may associate a Toeplitz operator onHS1 by

Tf = P+fP+, (6.33)

which, with respect to the orthogonal decompositionHS1 = H+
S1 ⊕ (1 − P+)HS1, can be

expressed as

Tf =
(

P+fP+ P+f (1 − P+)

(1 − P+)fP+ (1 − P+)f (1 − P+)

)
. (6.34)

For anyf ∈ AS1, Tf is a bounded operator onHS1. If f is further an invertible function
on S1, then the Toeplitz operatorTf : H+

S1 → H+
S1 is a Fredholm operator whose index is

given by

indexTf = TrP+HS1 (1 − Tf−1Tf ) − TrP+HS1 (1 − Tf Tf−1). (6.35)

It is then a straightforward calculation that establishes the index theorem[77]

indexTf = 1

2π i

∮
S1

f−1 df, (6.36)

which relates the index of the Toeplitz operatorTf to the winding number of the function
f : S1 → S1.

By considering the Hilbert spaceH+
S1 ⊗ CN , this construction may be easily general-

ized to matrix-valued functionsf : S1 → MN(C), and hence to a multi-brane system
[37]. In particular, we may apply an index theorem of the type(6.36)to the winding num-
bers of the tachyon field on̂Σ , regarded as a functiony �→ Ây(x, y) on S1 → U(N).
By comparing this result with(6.31), we may now put the index theoretical calculation
of Section 4.1into a proper K-theoretic interpretation. Namely, the dimensional reduc-
tion (obtained by eliminating theS1-dependence of all fields on̂Σ) corresponds to the
incorporation of Toeplitz operators of index zero in the Chern character mapping of the
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K-homology cycle overΣ̂ which defines the appropriate index class. However, the cru-
cial property again is that the operator(6.28) is in fact a Quillen superconnection that
acts on smooth sections of the family of Hilbert spacesH over S1. Therefore, the per-
tinent index theorem that was used inSection 4.1to yield the unstable D-brane charge
actually computes the overall number of eigenvalues ofD/

′ which cross zero in a ho-
motopy between elements in its gauge orbit. The index theorem thereby again charac-
terizes the cohomology class of the topological anomaly, or equivalently of the D-brane
charge.

It is instructive to see how this structure arises within the formalism of the brane–antibrane
reduction ofSection 4.2. The Chan–Paton gauge bundleE → Σ on the unstable Type
IIA D-branes is ungraded. However, the Clifford algebraC+∗

1 = C ⊕ Cσ1 has a nat-
ural Z2-grading, and so the product̂E = E ⊗ C+∗

1 = Ê+ ⊕ Ê− is a superbundle
which is identified with the Chan–Paton vector bundle of the corresponding Type IIB
brane–antibrane pairs. Correspondingly, the endomorphism algebra ofÊ is the
superbundle

EndÊ ∼= End(E) ⊗ C+∗
1, (6.37)

which gives rise to superconnectionŝA ∈ Ω−(Σ,EndÊ) of the formÂ = 12N ⊗ DA +
σ1 ⊗ T . The associated generalized Dirac operators are

D̂/ =
(

D/ A Gs ⊗ T

Gs ⊗ T D/ A

)
. (6.38)

The grading automorphism of the superbundleÊ is the generator(4.16) of the Clifford
algebraC+∗

1, and it commutes with the Dirac operator(6.38). Thus the pair(H,D/ ) defines
an odd K-homology cycle, and hence an element of K1(Σ). As with the derivations of
Section 4, the relationship between the unstable brane charges and the higher K-homology
group of the worldvolumeΣ comes about in a much more direct way through the reduction
from brane–antibrane pairs. The dimensional reduction formalism does, however, expose
the physical meaning of the oxidation.
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[29] P. Hǒrava, Type IIA D-branes, K-theory and matrix theory, Adv. Theoret. Math. Phys. 2 (1998) 1373.

hep-th/9812135.
[30] M. Billò, B. Craps, F. Roose, Ramond–Ramond couplings of non-BPS D-branes, J. High Energy Phys. 9906

(1999) 33. hep-th/9905157.
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